Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems
We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem. We show that for a broad class of biobjective problems (containing many important widely studied problems such as shortest pat...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2009-01, Vol.39 (4), p.1340-1371 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 4 |
container_start_page | 1340 |
container_title | SIAM journal on computing |
container_volume | 39 |
creator | Diakonikolas, Ilias Yannakakis, Mihalis |
description | We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem. We show that for a broad class of biobjective problems (containing many important widely studied problems such as shortest paths, spanning tree, matching, and many others), we can compute in polynomial time an ε-Pareto set that contains at most twice as many solutions as the minimum set. Furthermore we show that the factor of 2 is tight for these problems; i.e., it is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual problem of computing a specified number k of solutions which provide a good approximation to the Pareto curve. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/080724514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907972886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412699111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2d730743d184f738fd80d283b08a12977c5cebe7bac8d6f9bcbb482e20a6c1ed3</originalsourceid><addsrcrecordid>eNpdkM1KAzEURoMoWKsL3yC4ERejN8lMkyxr8Q8KLVTXQ5K5Q6fMNDVJRd_eSMWFq7s53O9wCLlkcMuYkHegQPKyYuURGTHQVSEZY8dkBKBlUQktT8lZjBsAVpZMjMhiNZi-p9PdLvjPbjAJ6dIETJ6uMEXa-kDvO2836FL3gXS19iFhTBlK60jNtqGLtMZAl8HbHod4Tk5a00e8-L1j8vb48Dp7LuaLp5fZdF44rlQqeCMFyFI0TJWtFKptFDRcCQvKMK6ldJVDi9Iap5pJq62ztlQcOZiJY9iIMbk-_M3e7_tsVA9ddNj3Zot-H2sNUss8Ncnk1T9y4_dhm-VqpYAD19UPdHOAXPAxBmzrXcg1wlfNoP4JW_-FFd-DVWnD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880202956</pqid></control><display><type>article</type><title>Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Diakonikolas, Ilias ; Yannakakis, Mihalis</creator><creatorcontrib>Diakonikolas, Ilias ; Yannakakis, Mihalis</creatorcontrib><description>We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem. We show that for a broad class of biobjective problems (containing many important widely studied problems such as shortest paths, spanning tree, matching, and many others), we can compute in polynomial time an ε-Pareto set that contains at most twice as many solutions as the minimum set. Furthermore we show that the factor of 2 is tight for these problems; i.e., it is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual problem of computing a specified number k of solutions which provide a good approximation to the Pareto curve. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/080724514</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Computation ; Lower bounds ; Mathematical analysis ; Mathematical models ; Optimization ; Pareto optimality ; Pareto optimum ; Shortest path algorithms ; Shortest-path problems ; Studies</subject><ispartof>SIAM journal on computing, 2009-01, Vol.39 (4), p.1340-1371</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2d730743d184f738fd80d283b08a12977c5cebe7bac8d6f9bcbb482e20a6c1ed3</citedby><cites>FETCH-LOGICAL-c288t-2d730743d184f738fd80d283b08a12977c5cebe7bac8d6f9bcbb482e20a6c1ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Diakonikolas, Ilias</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><title>Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems</title><title>SIAM journal on computing</title><description>We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem. We show that for a broad class of biobjective problems (containing many important widely studied problems such as shortest paths, spanning tree, matching, and many others), we can compute in polynomial time an ε-Pareto set that contains at most twice as many solutions as the minimum set. Furthermore we show that the factor of 2 is tight for these problems; i.e., it is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual problem of computing a specified number k of solutions which provide a good approximation to the Pareto curve. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Computation</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Pareto optimum</subject><subject>Shortest path algorithms</subject><subject>Shortest-path problems</subject><subject>Studies</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1KAzEURoMoWKsL3yC4ERejN8lMkyxr8Q8KLVTXQ5K5Q6fMNDVJRd_eSMWFq7s53O9wCLlkcMuYkHegQPKyYuURGTHQVSEZY8dkBKBlUQktT8lZjBsAVpZMjMhiNZi-p9PdLvjPbjAJ6dIETJ6uMEXa-kDvO2836FL3gXS19iFhTBlK60jNtqGLtMZAl8HbHod4Tk5a00e8-L1j8vb48Dp7LuaLp5fZdF44rlQqeCMFyFI0TJWtFKptFDRcCQvKMK6ldJVDi9Iap5pJq62ztlQcOZiJY9iIMbk-_M3e7_tsVA9ddNj3Zot-H2sNUss8Ncnk1T9y4_dhm-VqpYAD19UPdHOAXPAxBmzrXcg1wlfNoP4JW_-FFd-DVWnD</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Diakonikolas, Ilias</creator><creator>Yannakakis, Mihalis</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems</title><author>Diakonikolas, Ilias ; Yannakakis, Mihalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2d730743d184f738fd80d283b08a12977c5cebe7bac8d6f9bcbb482e20a6c1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Pareto optimum</topic><topic>Shortest path algorithms</topic><topic>Shortest-path problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diakonikolas, Ilias</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diakonikolas, Ilias</au><au>Yannakakis, Mihalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems</atitle><jtitle>SIAM journal on computing</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>39</volume><issue>4</issue><spage>1340</spage><epage>1371</epage><pages>1340-1371</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We investigate the problem of computing a minimum set of solutions that approximates within a specified accuracy ε the Pareto curve of a multiobjective optimization problem. We show that for a broad class of biobjective problems (containing many important widely studied problems such as shortest paths, spanning tree, matching, and many others), we can compute in polynomial time an ε-Pareto set that contains at most twice as many solutions as the minimum set. Furthermore we show that the factor of 2 is tight for these problems; i.e., it is NP-hard to do better. We present upper and lower bounds for three or more objectives, as well as for the dual problem of computing a specified number k of solutions which provide a good approximation to the Pareto curve. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080724514</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 2009-01, Vol.39 (4), p.1340-1371 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_907972886 |
source | SIAM Journals Online; Business Source Complete |
subjects | Approximation Computation Lower bounds Mathematical analysis Mathematical models Optimization Pareto optimality Pareto optimum Shortest path algorithms Shortest-path problems Studies |
title | Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Approximate%20Pareto%20Sets%20for%20Biobjective%20Shortest%20Paths%20and%20Other%20Problems&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Diakonikolas,%20Ilias&rft.date=2009-01-01&rft.volume=39&rft.issue=4&rft.spage=1340&rft.epage=1371&rft.pages=1340-1371&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/080724514&rft_dat=%3Cproquest_cross%3E2412699111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880202956&rft_id=info:pmid/&rfr_iscdi=true |