Image interpolation by two-dimensional parametric cubic convolution

Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-07, Vol.15 (7), p.1857-1870
Hauptverfasser: Jiazheng Shi, Reichenbach, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 7
container_start_page 1857
container_title IEEE transactions on image processing
container_volume 15
creator Jiazheng Shi
Reichenbach, S.E.
description Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2,2]/spl times/[-2,2] with constraints for biaxial symmetry, diagonal (or 90/spl deg/ rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.
doi_str_mv 10.1109/TIP.2006.873429
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907967557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643695</ieee_id><sourcerecordid>2350481391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-8f3794adedb6cb0829abfd709e777dd99df4aa973f10afc08816e9cd2c932cbe3</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgiv3QtQtBBqG6mtuTj8lJlnJRe6HQLuo6ZJKMTJmZXJOZSv-9Ge6Figu7ScLhybs4LyHvKGwoBX15t7vdMAC5UcgF0y_IKdWC1gCCvSxvaLBGKvQJOcv5HoCKhsrX5IRKxUGDOiXb3Wh_hqqf5pD2cbBzH6eqfazm37H2_RimXAZ2qPY22THMqXeVW9r1jNNDHJbVvyGvOjvk8PZ4n5Mf377eba_q65vvu-2X69o1gs216jhqYX3wrXQtKKZt23kEHRDRe619J6zVyDsKtnOgFJVBO8-c5sy1gZ-Tz4fcfYq_lpBnM_bZhWGwU4hLNhpQS2waLPLTf6VUkjNs4FnIFLCyK17gx3_gfVxS2Uw2SiJvENWadnlALsWcU-jMPvWjTY-Ggln7MqUvs_ZlDn2VHx-OsUs7Bv_kjwUVcHEENjs7dMlOrs9PDpWmGmlx7w-uDyH8FSO41A3_A9ERpjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867357780</pqid></control><display><type>article</type><title>Image interpolation by two-dimensional parametric cubic convolution</title><source>IEEE Electronic Library (IEL)</source><creator>Jiazheng Shi ; Reichenbach, S.E.</creator><creatorcontrib>Jiazheng Shi ; Reichenbach, S.E.</creatorcontrib><description>Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2,2]/spl times/[-2,2] with constraints for biaxial symmetry, diagonal (or 90/spl deg/ rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.873429</identifier><identifier>PMID: 16830908</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Aliasing ; Applied sciences ; Autocorrelation ; Closed-form solution ; Computer Graphics ; Convolution ; Cubic convolution ; Error analysis ; Exact sciences and technology ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Interpolation ; Kernel ; Kernels ; Layout ; Numerical Analysis, Computer-Assisted ; reconstruction ; resampling ; Signal processing ; Signal Processing, Computer-Assisted ; Subtraction Technique ; Symmetry ; Telecommunications and information theory ; Two dimensional displays ; Video Recording - methods</subject><ispartof>IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1857-1870</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-8f3794adedb6cb0829abfd709e777dd99df4aa973f10afc08816e9cd2c932cbe3</citedby><cites>FETCH-LOGICAL-c542t-8f3794adedb6cb0829abfd709e777dd99df4aa973f10afc08816e9cd2c932cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17891971$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16830908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiazheng Shi</creatorcontrib><creatorcontrib>Reichenbach, S.E.</creatorcontrib><title>Image interpolation by two-dimensional parametric cubic convolution</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2,2]/spl times/[-2,2] with constraints for biaxial symmetry, diagonal (or 90/spl deg/ rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.</description><subject>Algorithms</subject><subject>Aliasing</subject><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Closed-form solution</subject><subject>Computer Graphics</subject><subject>Convolution</subject><subject>Cubic convolution</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Layout</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>reconstruction</subject><subject>resampling</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Subtraction Technique</subject><subject>Symmetry</subject><subject>Telecommunications and information theory</subject><subject>Two dimensional displays</subject><subject>Video Recording - methods</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgiv3QtQtBBqG6mtuTj8lJlnJRe6HQLuo6ZJKMTJmZXJOZSv-9Ge6Figu7ScLhybs4LyHvKGwoBX15t7vdMAC5UcgF0y_IKdWC1gCCvSxvaLBGKvQJOcv5HoCKhsrX5IRKxUGDOiXb3Wh_hqqf5pD2cbBzH6eqfazm37H2_RimXAZ2qPY22THMqXeVW9r1jNNDHJbVvyGvOjvk8PZ4n5Mf377eba_q65vvu-2X69o1gs216jhqYX3wrXQtKKZt23kEHRDRe619J6zVyDsKtnOgFJVBO8-c5sy1gZ-Tz4fcfYq_lpBnM_bZhWGwU4hLNhpQS2waLPLTf6VUkjNs4FnIFLCyK17gx3_gfVxS2Uw2SiJvENWadnlALsWcU-jMPvWjTY-Ggln7MqUvs_ZlDn2VHx-OsUs7Bv_kjwUVcHEENjs7dMlOrs9PDpWmGmlx7w-uDyH8FSO41A3_A9ERpjk</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Jiazheng Shi</creator><creator>Reichenbach, S.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>Image interpolation by two-dimensional parametric cubic convolution</title><author>Jiazheng Shi ; Reichenbach, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-8f3794adedb6cb0829abfd709e777dd99df4aa973f10afc08816e9cd2c932cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Aliasing</topic><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Closed-form solution</topic><topic>Computer Graphics</topic><topic>Convolution</topic><topic>Cubic convolution</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Layout</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>reconstruction</topic><topic>resampling</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Subtraction Technique</topic><topic>Symmetry</topic><topic>Telecommunications and information theory</topic><topic>Two dimensional displays</topic><topic>Video Recording - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiazheng Shi</creatorcontrib><creatorcontrib>Reichenbach, S.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiazheng Shi</au><au>Reichenbach, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image interpolation by two-dimensional parametric cubic convolution</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>15</volume><issue>7</issue><spage>1857</spage><epage>1870</epage><pages>1857-1870</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2,2]/spl times/[-2,2] with constraints for biaxial symmetry, diagonal (or 90/spl deg/ rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16830908</pmid><doi>10.1109/TIP.2006.873429</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1857-1870
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_907967557
source IEEE Electronic Library (IEL)
subjects Algorithms
Aliasing
Applied sciences
Autocorrelation
Closed-form solution
Computer Graphics
Convolution
Cubic convolution
Error analysis
Exact sciences and technology
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Information Storage and Retrieval - methods
Information, signal and communications theory
Interpolation
Kernel
Kernels
Layout
Numerical Analysis, Computer-Assisted
reconstruction
resampling
Signal processing
Signal Processing, Computer-Assisted
Subtraction Technique
Symmetry
Telecommunications and information theory
Two dimensional displays
Video Recording - methods
title Image interpolation by two-dimensional parametric cubic convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20interpolation%20by%20two-dimensional%20parametric%20cubic%20convolution&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jiazheng%20Shi&rft.date=2006-07-01&rft.volume=15&rft.issue=7&rft.spage=1857&rft.epage=1870&rft.pages=1857-1870&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.873429&rft_dat=%3Cproquest_RIE%3E2350481391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867357780&rft_id=info:pmid/16830908&rft_ieee_id=1643695&rfr_iscdi=true