Characterization of micromachined ultrasonic transducers using light diffraction tomography

This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302
Hauptverfasser: Almqvist, M., Torndahl, M., Nilsson, M., Lilliehorn, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2302
container_issue 12
container_start_page 2298
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 52
creator Almqvist, M.
Torndahl, M.
Nilsson, M.
Lilliehorn, T.
description This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.
doi_str_mv 10.1109/TUFFC.2005.1563272
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907964566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1563272</ieee_id><sourcerecordid>28004382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rj6BxSkEdRTj6l0kk6OMjgqDHjZPXkI6XT1TJb-MulmWX-9aadxwIMeigTqqbeoqpeQl0C3AFR_uLnd73dbRqnYgpAFK9kjsgHBRK60EI_Jhiol8oICvSLPYryjFDjX7Cm5AsllwbXYkO-7kw3WTRj8Tzv5oc-GJuu8C0Nn3cn3WGdzOwUbh967LH36WM8OQ8zm6Ptj1vrjacpq3zSLylI_Dd1wDHY8PTwnTxrbRnyxvtfkdv_pZvclP3z7_HX38ZA7AXTKFSqnHPC6onUDQmvFkQKCsxywBq5lAww5lLLWUmtwjDVc6kIzTCNXsrgmh7NuvMdxrswYfGfDgxmsN-08pqhSmIiGqrJQpUMD6CrDS3AmtQOjWON02k5dVFWSe3-WG8PwY8Y4mc5Hh21rexzmaDQtteRCLo3f_ZMsKTBQTP8XZIpSXiiWwDd_gXfDHPq0PaOkBspLWiSInaF0pRgDNn8mBmoWZ5jfzjCLM8zqjFT0elWeqw7rS8lqhQS8XQEbnW3TPXvn44UrC12C4Il7deY8Il7Sa5tfNXvJUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869104703</pqid></control><display><type>article</type><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</creator><creatorcontrib>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</creatorcontrib><description>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2005.1563272</identifier><identifier>PMID: 16463495</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic diffraction ; Acoustic measurements ; Acoustic signal processing ; Acoustics ; Computer Simulation ; Electric Capacitance ; Electronics, Medical ; Engineering and Technology ; Equipment Design ; Equipment Failure Analysis - methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Lead zirconate titanates ; Light ; Light diffraction ; Measurement methods ; Measurement standards ; Medical Engineering ; Medicinteknik ; Membranes, Artificial ; Microelectrodes ; Micromechanics ; Microphones ; Miniaturization ; Physics ; Pressure measurement ; Refractometry - methods ; Sonar equipment ; Teknik ; Tomography ; Tomography, Optical - methods ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonic transducers ; Ultrasonic variables measurement ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</citedby><cites>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1563272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1563272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17397154$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16463495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/210231$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Almqvist, M.</creatorcontrib><creatorcontrib>Torndahl, M.</creatorcontrib><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Lilliehorn, T.</creatorcontrib><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</description><subject>Acoustic diffraction</subject><subject>Acoustic measurements</subject><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Computer Simulation</subject><subject>Electric Capacitance</subject><subject>Electronics, Medical</subject><subject>Engineering and Technology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis - methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Lead zirconate titanates</subject><subject>Light</subject><subject>Light diffraction</subject><subject>Measurement methods</subject><subject>Measurement standards</subject><subject>Medical Engineering</subject><subject>Medicinteknik</subject><subject>Membranes, Artificial</subject><subject>Microelectrodes</subject><subject>Micromechanics</subject><subject>Microphones</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Pressure measurement</subject><subject>Refractometry - methods</subject><subject>Sonar equipment</subject><subject>Teknik</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkk2LFDEQhoMo7rj6BxSkEdRTj6l0kk6OMjgqDHjZPXkI6XT1TJb-MulmWX-9aadxwIMeigTqqbeoqpeQl0C3AFR_uLnd73dbRqnYgpAFK9kjsgHBRK60EI_Jhiol8oICvSLPYryjFDjX7Cm5AsllwbXYkO-7kw3WTRj8Tzv5oc-GJuu8C0Nn3cn3WGdzOwUbh967LH36WM8OQ8zm6Ptj1vrjacpq3zSLylI_Dd1wDHY8PTwnTxrbRnyxvtfkdv_pZvclP3z7_HX38ZA7AXTKFSqnHPC6onUDQmvFkQKCsxywBq5lAww5lLLWUmtwjDVc6kIzTCNXsrgmh7NuvMdxrswYfGfDgxmsN-08pqhSmIiGqrJQpUMD6CrDS3AmtQOjWON02k5dVFWSe3-WG8PwY8Y4mc5Hh21rexzmaDQtteRCLo3f_ZMsKTBQTP8XZIpSXiiWwDd_gXfDHPq0PaOkBspLWiSInaF0pRgDNn8mBmoWZ5jfzjCLM8zqjFT0elWeqw7rS8lqhQS8XQEbnW3TPXvn44UrC12C4Il7deY8Il7Sa5tfNXvJUg</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Almqvist, M.</creator><creator>Torndahl, M.</creator><creator>Nilsson, M.</creator><creator>Lilliehorn, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20051201</creationdate><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><author>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic diffraction</topic><topic>Acoustic measurements</topic><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Computer Simulation</topic><topic>Electric Capacitance</topic><topic>Electronics, Medical</topic><topic>Engineering and Technology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis - methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Lead zirconate titanates</topic><topic>Light</topic><topic>Light diffraction</topic><topic>Measurement methods</topic><topic>Measurement standards</topic><topic>Medical Engineering</topic><topic>Medicinteknik</topic><topic>Membranes, Artificial</topic><topic>Microelectrodes</topic><topic>Micromechanics</topic><topic>Microphones</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Pressure measurement</topic><topic>Refractometry - methods</topic><topic>Sonar equipment</topic><topic>Teknik</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almqvist, M.</creatorcontrib><creatorcontrib>Torndahl, M.</creatorcontrib><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Lilliehorn, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almqvist, M.</au><au>Torndahl, M.</au><au>Nilsson, M.</au><au>Lilliehorn, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of micromachined ultrasonic transducers using light diffraction tomography</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>52</volume><issue>12</issue><spage>2298</spage><epage>2302</epage><pages>2298-2302</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16463495</pmid><doi>10.1109/TUFFC.2005.1563272</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_907964566
source IEEE Electronic Library (IEL)
subjects Acoustic diffraction
Acoustic measurements
Acoustic signal processing
Acoustics
Computer Simulation
Electric Capacitance
Electronics, Medical
Engineering and Technology
Equipment Design
Equipment Failure Analysis - methods
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Lead zirconate titanates
Light
Light diffraction
Measurement methods
Measurement standards
Medical Engineering
Medicinteknik
Membranes, Artificial
Microelectrodes
Micromechanics
Microphones
Miniaturization
Physics
Pressure measurement
Refractometry - methods
Sonar equipment
Teknik
Tomography
Tomography, Optical - methods
Transducers
Transduction
acoustical devices for the generation and reproduction of sound
Ultrasonic imaging
Ultrasonic testing
Ultrasonic transducers
Ultrasonic variables measurement
Ultrasonics, quantum acoustics, and physical effects of sound
Ultrasonography - instrumentation
Ultrasonography - methods
Ultrasound
title Characterization of micromachined ultrasonic transducers using light diffraction tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20micromachined%20ultrasonic%20transducers%20using%20light%20diffraction%20tomography&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Almqvist,%20M.&rft.date=2005-12-01&rft.volume=52&rft.issue=12&rft.spage=2298&rft.epage=2302&rft.pages=2298-2302&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2005.1563272&rft_dat=%3Cproquest_RIE%3E28004382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869104703&rft_id=info:pmid/16463495&rft_ieee_id=1563272&rfr_iscdi=true