Characterization of micromachined ultrasonic transducers using light diffraction tomography
This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2302 |
---|---|
container_issue | 12 |
container_start_page | 2298 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 52 |
creator | Almqvist, M. Torndahl, M. Nilsson, M. Lilliehorn, T. |
description | This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography. |
doi_str_mv | 10.1109/TUFFC.2005.1563272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907964566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1563272</ieee_id><sourcerecordid>28004382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rj6BxSkEdRTj6l0kk6OMjgqDHjZPXkI6XT1TJb-MulmWX-9aadxwIMeigTqqbeoqpeQl0C3AFR_uLnd73dbRqnYgpAFK9kjsgHBRK60EI_Jhiol8oICvSLPYryjFDjX7Cm5AsllwbXYkO-7kw3WTRj8Tzv5oc-GJuu8C0Nn3cn3WGdzOwUbh967LH36WM8OQ8zm6Ptj1vrjacpq3zSLylI_Dd1wDHY8PTwnTxrbRnyxvtfkdv_pZvclP3z7_HX38ZA7AXTKFSqnHPC6onUDQmvFkQKCsxywBq5lAww5lLLWUmtwjDVc6kIzTCNXsrgmh7NuvMdxrswYfGfDgxmsN-08pqhSmIiGqrJQpUMD6CrDS3AmtQOjWON02k5dVFWSe3-WG8PwY8Y4mc5Hh21rexzmaDQtteRCLo3f_ZMsKTBQTP8XZIpSXiiWwDd_gXfDHPq0PaOkBspLWiSInaF0pRgDNn8mBmoWZ5jfzjCLM8zqjFT0elWeqw7rS8lqhQS8XQEbnW3TPXvn44UrC12C4Il7deY8Il7Sa5tfNXvJUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869104703</pqid></control><display><type>article</type><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</creator><creatorcontrib>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</creatorcontrib><description>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2005.1563272</identifier><identifier>PMID: 16463495</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic diffraction ; Acoustic measurements ; Acoustic signal processing ; Acoustics ; Computer Simulation ; Electric Capacitance ; Electronics, Medical ; Engineering and Technology ; Equipment Design ; Equipment Failure Analysis - methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Lead zirconate titanates ; Light ; Light diffraction ; Measurement methods ; Measurement standards ; Medical Engineering ; Medicinteknik ; Membranes, Artificial ; Microelectrodes ; Micromechanics ; Microphones ; Miniaturization ; Physics ; Pressure measurement ; Refractometry - methods ; Sonar equipment ; Teknik ; Tomography ; Tomography, Optical - methods ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonic transducers ; Ultrasonic variables measurement ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</citedby><cites>FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1563272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1563272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17397154$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16463495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/210231$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Almqvist, M.</creatorcontrib><creatorcontrib>Torndahl, M.</creatorcontrib><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Lilliehorn, T.</creatorcontrib><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</description><subject>Acoustic diffraction</subject><subject>Acoustic measurements</subject><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Computer Simulation</subject><subject>Electric Capacitance</subject><subject>Electronics, Medical</subject><subject>Engineering and Technology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis - methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Lead zirconate titanates</subject><subject>Light</subject><subject>Light diffraction</subject><subject>Measurement methods</subject><subject>Measurement standards</subject><subject>Medical Engineering</subject><subject>Medicinteknik</subject><subject>Membranes, Artificial</subject><subject>Microelectrodes</subject><subject>Micromechanics</subject><subject>Microphones</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Pressure measurement</subject><subject>Refractometry - methods</subject><subject>Sonar equipment</subject><subject>Teknik</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkk2LFDEQhoMo7rj6BxSkEdRTj6l0kk6OMjgqDHjZPXkI6XT1TJb-MulmWX-9aadxwIMeigTqqbeoqpeQl0C3AFR_uLnd73dbRqnYgpAFK9kjsgHBRK60EI_Jhiol8oICvSLPYryjFDjX7Cm5AsllwbXYkO-7kw3WTRj8Tzv5oc-GJuu8C0Nn3cn3WGdzOwUbh967LH36WM8OQ8zm6Ptj1vrjacpq3zSLylI_Dd1wDHY8PTwnTxrbRnyxvtfkdv_pZvclP3z7_HX38ZA7AXTKFSqnHPC6onUDQmvFkQKCsxywBq5lAww5lLLWUmtwjDVc6kIzTCNXsrgmh7NuvMdxrswYfGfDgxmsN-08pqhSmIiGqrJQpUMD6CrDS3AmtQOjWON02k5dVFWSe3-WG8PwY8Y4mc5Hh21rexzmaDQtteRCLo3f_ZMsKTBQTP8XZIpSXiiWwDd_gXfDHPq0PaOkBspLWiSInaF0pRgDNn8mBmoWZ5jfzjCLM8zqjFT0elWeqw7rS8lqhQS8XQEbnW3TPXvn44UrC12C4Il7deY8Il7Sa5tfNXvJUg</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Almqvist, M.</creator><creator>Torndahl, M.</creator><creator>Nilsson, M.</creator><creator>Lilliehorn, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20051201</creationdate><title>Characterization of micromachined ultrasonic transducers using light diffraction tomography</title><author>Almqvist, M. ; Torndahl, M. ; Nilsson, M. ; Lilliehorn, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-8e8c8c14db0df159984e01e1ca41ed1496f12e4176d96991c22f469392e272b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic diffraction</topic><topic>Acoustic measurements</topic><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Computer Simulation</topic><topic>Electric Capacitance</topic><topic>Electronics, Medical</topic><topic>Engineering and Technology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis - methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Lead zirconate titanates</topic><topic>Light</topic><topic>Light diffraction</topic><topic>Measurement methods</topic><topic>Measurement standards</topic><topic>Medical Engineering</topic><topic>Medicinteknik</topic><topic>Membranes, Artificial</topic><topic>Microelectrodes</topic><topic>Micromechanics</topic><topic>Microphones</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Pressure measurement</topic><topic>Refractometry - methods</topic><topic>Sonar equipment</topic><topic>Teknik</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almqvist, M.</creatorcontrib><creatorcontrib>Torndahl, M.</creatorcontrib><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Lilliehorn, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almqvist, M.</au><au>Torndahl, M.</au><au>Nilsson, M.</au><au>Lilliehorn, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of micromachined ultrasonic transducers using light diffraction tomography</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>52</volume><issue>12</issue><spage>2298</spage><epage>2302</epage><pages>2298-2302</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone arid microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16463495</pmid><doi>10.1109/TUFFC.2005.1563272</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005-12, Vol.52 (12), p.2298-2302 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_907964566 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic diffraction Acoustic measurements Acoustic signal processing Acoustics Computer Simulation Electric Capacitance Electronics, Medical Engineering and Technology Equipment Design Equipment Failure Analysis - methods Exact sciences and technology Fundamental areas of phenomenology (including applications) General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Lead zirconate titanates Light Light diffraction Measurement methods Measurement standards Medical Engineering Medicinteknik Membranes, Artificial Microelectrodes Micromechanics Microphones Miniaturization Physics Pressure measurement Refractometry - methods Sonar equipment Teknik Tomography Tomography, Optical - methods Transducers Transduction acoustical devices for the generation and reproduction of sound Ultrasonic imaging Ultrasonic testing Ultrasonic transducers Ultrasonic variables measurement Ultrasonics, quantum acoustics, and physical effects of sound Ultrasonography - instrumentation Ultrasonography - methods Ultrasound |
title | Characterization of micromachined ultrasonic transducers using light diffraction tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20micromachined%20ultrasonic%20transducers%20using%20light%20diffraction%20tomography&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Almqvist,%20M.&rft.date=2005-12-01&rft.volume=52&rft.issue=12&rft.spage=2298&rft.epage=2302&rft.pages=2298-2302&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2005.1563272&rft_dat=%3Cproquest_RIE%3E28004382%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869104703&rft_id=info:pmid/16463495&rft_ieee_id=1563272&rfr_iscdi=true |