Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals
Lead sulfide (PbS) crystals with sizes from 20 to 500 nm were deposited in chemical bath from an alkaline solution (CBD method). The morphology of specimens was studied using high resolution scanning electron microscopy (HRSEM). Influence of crystallite sizes on the electronic structure was studied...
Gespeichert in:
Veröffentlicht in: | Protection of metals and physical chemistry of surfaces 2010-11, Vol.46 (6), p.633-638 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 638 |
---|---|
container_issue | 6 |
container_start_page | 633 |
container_title | Protection of metals and physical chemistry of surfaces |
container_volume | 46 |
creator | Kovalev, A. I. Wainshtein, D. L. Rashkovskiy, A. Yu Golan, Y. Osherov, A. Ashkenazy, N. |
description | Lead sulfide (PbS) crystals with sizes from 20 to 500 nm were deposited in chemical bath from an alkaline solution (CBD method). The morphology of specimens was studied using high resolution scanning electron microscopy (HRSEM). Influence of crystallite sizes on the electronic structure was studied with X-ray photoelectron spectroscopy (XPS) and high resolution electrons energy losses spectroscopy (HREELS). The work function was measured with a Kelvin probe microscopy in air.
The photoelectron doublet peaks at spectra of Pb 4f donor and S 2p acceptor were found to be shifted toward the higher binding energies comparing to the corresponding lines positions in the reference PbS compound. This shift increases with decreasing of the crystals size. The effect of size shift in lead sulfide could be noticed when size is smaller than 300 nm. HREELS showed that dispersion of nanoparticles causes smoothing of the PbS band gap in different directions of reciprocal lattice, and the minimal transition energy increases from 0.39 to 3.62 eV. The work function of the material is shown to be in inverse proportion to the semiconductor crystal size. This data correlates well with the electron spectroscopy results. |
doi_str_mv | 10.1134/S2070205110060018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907961409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907961409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6324e2a7ebb046b097f19bdedaa1bfeb4c67af579456af11aae6283b2759e3403</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLfgxdNqks0mzVGK_0DwUIXelmx2UlJ2kzbJHuqnN6WioHh6w_B7b4ZXFJcE3xBSsdsFxQJTXBOCMceYzI6KyX5VUsyXx99zTU6LsxjXGeJiJibFcpHGbmfdCnmDtqNyaRzKaD8AgTGgU0Q-2JV1KlnvkHUowmC1d92o097Vg-pQHHtjO0BOOa_DLibVx_PixGSBiy-dFu8P92_zp_Ll9fF5fvdS6oqJVPKKMqBKQNtixlsshSGy7aBTirQGWqa5UKYWktVcGUKUAk5nVUtFLaFiuJoW14fcTfDbEWJqBhs19L1y4MfYSCwkJwzLTF79Itd-DC4_10hK8mVKqgyRA6SDjzGAaTbBDirsGoKbfdPNn6azhx48MbNuBeEn-H_TJwKngOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921097213</pqid></control><display><type>article</type><title>Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals</title><source>Springer Nature - Complete Springer Journals</source><creator>Kovalev, A. I. ; Wainshtein, D. L. ; Rashkovskiy, A. Yu ; Golan, Y. ; Osherov, A. ; Ashkenazy, N.</creator><creatorcontrib>Kovalev, A. I. ; Wainshtein, D. L. ; Rashkovskiy, A. Yu ; Golan, Y. ; Osherov, A. ; Ashkenazy, N.</creatorcontrib><description>Lead sulfide (PbS) crystals with sizes from 20 to 500 nm were deposited in chemical bath from an alkaline solution (CBD method). The morphology of specimens was studied using high resolution scanning electron microscopy (HRSEM). Influence of crystallite sizes on the electronic structure was studied with X-ray photoelectron spectroscopy (XPS) and high resolution electrons energy losses spectroscopy (HREELS). The work function was measured with a Kelvin probe microscopy in air.
The photoelectron doublet peaks at spectra of Pb 4f donor and S 2p acceptor were found to be shifted toward the higher binding energies comparing to the corresponding lines positions in the reference PbS compound. This shift increases with decreasing of the crystals size. The effect of size shift in lead sulfide could be noticed when size is smaller than 300 nm. HREELS showed that dispersion of nanoparticles causes smoothing of the PbS band gap in different directions of reciprocal lattice, and the minimal transition energy increases from 0.39 to 3.62 eV. The work function of the material is shown to be in inverse proportion to the semiconductor crystal size. This data correlates well with the electron spectroscopy results.</description><identifier>ISSN: 2070-2051</identifier><identifier>EISSN: 2070-206X</identifier><identifier>DOI: 10.1134/S2070205110060018</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Acceptors (electronic) ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Crystallites ; Crystals ; Dispersions ; High resolution ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Lead sulfides ; Materials Science ; Metallic Materials ; Nanocrystals ; Physicochemical Processes at the Interfaces ; Tribology ; Work functions ; X-ray photoelectron spectroscopy</subject><ispartof>Protection of metals and physical chemistry of surfaces, 2010-11, Vol.46 (6), p.633-638</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6324e2a7ebb046b097f19bdedaa1bfeb4c67af579456af11aae6283b2759e3403</citedby><cites>FETCH-LOGICAL-c347t-6324e2a7ebb046b097f19bdedaa1bfeb4c67af579456af11aae6283b2759e3403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070205110060018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070205110060018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kovalev, A. I.</creatorcontrib><creatorcontrib>Wainshtein, D. L.</creatorcontrib><creatorcontrib>Rashkovskiy, A. Yu</creatorcontrib><creatorcontrib>Golan, Y.</creatorcontrib><creatorcontrib>Osherov, A.</creatorcontrib><creatorcontrib>Ashkenazy, N.</creatorcontrib><title>Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals</title><title>Protection of metals and physical chemistry of surfaces</title><addtitle>Prot Met Phys Chem Surf</addtitle><description>Lead sulfide (PbS) crystals with sizes from 20 to 500 nm were deposited in chemical bath from an alkaline solution (CBD method). The morphology of specimens was studied using high resolution scanning electron microscopy (HRSEM). Influence of crystallite sizes on the electronic structure was studied with X-ray photoelectron spectroscopy (XPS) and high resolution electrons energy losses spectroscopy (HREELS). The work function was measured with a Kelvin probe microscopy in air.
The photoelectron doublet peaks at spectra of Pb 4f donor and S 2p acceptor were found to be shifted toward the higher binding energies comparing to the corresponding lines positions in the reference PbS compound. This shift increases with decreasing of the crystals size. The effect of size shift in lead sulfide could be noticed when size is smaller than 300 nm. HREELS showed that dispersion of nanoparticles causes smoothing of the PbS band gap in different directions of reciprocal lattice, and the minimal transition energy increases from 0.39 to 3.62 eV. The work function of the material is shown to be in inverse proportion to the semiconductor crystal size. This data correlates well with the electron spectroscopy results.</description><subject>Acceptors (electronic)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dispersions</subject><subject>High resolution</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Lead sulfides</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanocrystals</subject><subject>Physicochemical Processes at the Interfaces</subject><subject>Tribology</subject><subject>Work functions</subject><subject>X-ray photoelectron spectroscopy</subject><issn>2070-2051</issn><issn>2070-206X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxRdRsFY_gLfgxdNqks0mzVGK_0DwUIXelmx2UlJ2kzbJHuqnN6WioHh6w_B7b4ZXFJcE3xBSsdsFxQJTXBOCMceYzI6KyX5VUsyXx99zTU6LsxjXGeJiJibFcpHGbmfdCnmDtqNyaRzKaD8AgTGgU0Q-2JV1KlnvkHUowmC1d92o097Vg-pQHHtjO0BOOa_DLibVx_PixGSBiy-dFu8P92_zp_Ll9fF5fvdS6oqJVPKKMqBKQNtixlsshSGy7aBTirQGWqa5UKYWktVcGUKUAk5nVUtFLaFiuJoW14fcTfDbEWJqBhs19L1y4MfYSCwkJwzLTF79Itd-DC4_10hK8mVKqgyRA6SDjzGAaTbBDirsGoKbfdPNn6azhx48MbNuBeEn-H_TJwKngOA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Kovalev, A. I.</creator><creator>Wainshtein, D. L.</creator><creator>Rashkovskiy, A. Yu</creator><creator>Golan, Y.</creator><creator>Osherov, A.</creator><creator>Ashkenazy, N.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101101</creationdate><title>Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals</title><author>Kovalev, A. I. ; Wainshtein, D. L. ; Rashkovskiy, A. Yu ; Golan, Y. ; Osherov, A. ; Ashkenazy, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6324e2a7ebb046b097f19bdedaa1bfeb4c67af579456af11aae6283b2759e3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceptors (electronic)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dispersions</topic><topic>High resolution</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Lead sulfides</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanocrystals</topic><topic>Physicochemical Processes at the Interfaces</topic><topic>Tribology</topic><topic>Work functions</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalev, A. I.</creatorcontrib><creatorcontrib>Wainshtein, D. L.</creatorcontrib><creatorcontrib>Rashkovskiy, A. Yu</creatorcontrib><creatorcontrib>Golan, Y.</creatorcontrib><creatorcontrib>Osherov, A.</creatorcontrib><creatorcontrib>Ashkenazy, N.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Protection of metals and physical chemistry of surfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalev, A. I.</au><au>Wainshtein, D. L.</au><au>Rashkovskiy, A. Yu</au><au>Golan, Y.</au><au>Osherov, A.</au><au>Ashkenazy, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals</atitle><jtitle>Protection of metals and physical chemistry of surfaces</jtitle><stitle>Prot Met Phys Chem Surf</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>46</volume><issue>6</issue><spage>633</spage><epage>638</epage><pages>633-638</pages><issn>2070-2051</issn><eissn>2070-206X</eissn><abstract>Lead sulfide (PbS) crystals with sizes from 20 to 500 nm were deposited in chemical bath from an alkaline solution (CBD method). The morphology of specimens was studied using high resolution scanning electron microscopy (HRSEM). Influence of crystallite sizes on the electronic structure was studied with X-ray photoelectron spectroscopy (XPS) and high resolution electrons energy losses spectroscopy (HREELS). The work function was measured with a Kelvin probe microscopy in air.
The photoelectron doublet peaks at spectra of Pb 4f donor and S 2p acceptor were found to be shifted toward the higher binding energies comparing to the corresponding lines positions in the reference PbS compound. This shift increases with decreasing of the crystals size. The effect of size shift in lead sulfide could be noticed when size is smaller than 300 nm. HREELS showed that dispersion of nanoparticles causes smoothing of the PbS band gap in different directions of reciprocal lattice, and the minimal transition energy increases from 0.39 to 3.62 eV. The work function of the material is shown to be in inverse proportion to the semiconductor crystal size. This data correlates well with the electron spectroscopy results.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S2070205110060018</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-2051 |
ispartof | Protection of metals and physical chemistry of surfaces, 2010-11, Vol.46 (6), p.633-638 |
issn | 2070-2051 2070-206X |
language | eng |
recordid | cdi_proquest_miscellaneous_907961409 |
source | Springer Nature - Complete Springer Journals |
subjects | Acceptors (electronic) Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Crystallites Crystals Dispersions High resolution Industrial Chemistry/Chemical Engineering Inorganic Chemistry Lead sulfides Materials Science Metallic Materials Nanocrystals Physicochemical Processes at the Interfaces Tribology Work functions X-ray photoelectron spectroscopy |
title | Studying of quantum-size effects origination in semiconducting lead sulfide nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20of%20quantum-size%20effects%20origination%20in%20semiconducting%20lead%20sulfide%20nanocrystals&rft.jtitle=Protection%20of%20metals%20and%20physical%20chemistry%20of%20surfaces&rft.au=Kovalev,%20A.%20I.&rft.date=2010-11-01&rft.volume=46&rft.issue=6&rft.spage=633&rft.epage=638&rft.pages=633-638&rft.issn=2070-2051&rft.eissn=2070-206X&rft_id=info:doi/10.1134/S2070205110060018&rft_dat=%3Cproquest_cross%3E907961409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921097213&rft_id=info:pmid/&rfr_iscdi=true |