Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites
The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2011-08, Vol.59 (14), p.5593-5602 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5602 |
---|---|
container_issue | 14 |
container_start_page | 5593 |
container_title | Acta materialia |
container_volume | 59 |
creator | Yang, Wenhu Yu, Shuhui Sun, Rong Du, Ruxu |
description | The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant (
ε
r) of the composite containing 40
vol.% nanosized CCTO filler is over 10
6 at 10
2
Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the
ε
r value is 35.7 (with 40
vol.%). The
ε
r and loss tangent (tan
δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10
4
Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051
eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field. |
doi_str_mv | 10.1016/j.actamat.2011.05.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907957414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411003648</els_id><sourcerecordid>907957414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhk1poNu0P6GgS8nJ3pEl-eMUwiZpAqHJIcmtiLE8YrXY1kbyLrS_vlp202tPI0bPzMs8WfaNQ8GBV8tNgWbGEeeiBM4LUAUI-SFb8KYWeSmV-JjeQrV5JZX8lH2OcQPAy1rCIvv1EyefM5x6NjoTfHR_iJG1ZGbmLVutnh-ZdcNAITI_sXlNrHc0pO_gDOtojXvnwzu6fHq9vmXGj9u0aKb4JTuzOET6eqrn2cvtzfPqLn94_HG_unrIjaj5nGMteYUd1pXCslMEsuG87LiipqoM7yuD0KS2qLq2MWANb6gF0QO0FpRsxXl2cdy7Df5tR3HWo4uGhgEn8ruoW6hblUJkItWRPNwaA1m9DW7E8Ftz0AebeqNPNvXBpgalk8009_2UgNHgYANOxsV_w6UUjZT1gbs8cpTO3TsKOhpHk6HehSRN9979J-kvTOmLoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907957414</pqid></control><display><type>article</type><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</creator><creatorcontrib>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</creatorcontrib><description>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant (
ε
r) of the composite containing 40
vol.% nanosized CCTO filler is over 10
6 at 10
2
Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the
ε
r value is 35.7 (with 40
vol.%). The
ε
r and loss tangent (tan
δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10
4
Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051
eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.05.034</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CALCIUM FLUORIDE ; CCTO ; CERAMICS ; COMPOSITES ; COPPER OXIDE ; Dielectric ; DIELECTRIC CONSTANT ; Exact sciences and technology ; Fillers ; FLUORIDES ; INSULATION (ELECTRICAL) ; Metals. Metallurgy ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polyvinylidene fluorides ; PVDF ; SIZE EFFECT ; Titanates</subject><ispartof>Acta materialia, 2011-08, Vol.59 (14), p.5593-5602</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</citedby><cites>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2011.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24384474$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Wenhu</creatorcontrib><creatorcontrib>Yu, Shuhui</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><title>Acta materialia</title><description>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant (
ε
r) of the composite containing 40
vol.% nanosized CCTO filler is over 10
6 at 10
2
Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the
ε
r value is 35.7 (with 40
vol.%). The
ε
r and loss tangent (tan
δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10
4
Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051
eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</description><subject>Applied sciences</subject><subject>CALCIUM FLUORIDE</subject><subject>CCTO</subject><subject>CERAMICS</subject><subject>COMPOSITES</subject><subject>COPPER OXIDE</subject><subject>Dielectric</subject><subject>DIELECTRIC CONSTANT</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>FLUORIDES</subject><subject>INSULATION (ELECTRICAL)</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polyvinylidene fluorides</subject><subject>PVDF</subject><subject>SIZE EFFECT</subject><subject>Titanates</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhk1poNu0P6GgS8nJ3pEl-eMUwiZpAqHJIcmtiLE8YrXY1kbyLrS_vlp202tPI0bPzMs8WfaNQ8GBV8tNgWbGEeeiBM4LUAUI-SFb8KYWeSmV-JjeQrV5JZX8lH2OcQPAy1rCIvv1EyefM5x6NjoTfHR_iJG1ZGbmLVutnh-ZdcNAITI_sXlNrHc0pO_gDOtojXvnwzu6fHq9vmXGj9u0aKb4JTuzOET6eqrn2cvtzfPqLn94_HG_unrIjaj5nGMteYUd1pXCslMEsuG87LiipqoM7yuD0KS2qLq2MWANb6gF0QO0FpRsxXl2cdy7Df5tR3HWo4uGhgEn8ruoW6hblUJkItWRPNwaA1m9DW7E8Ftz0AebeqNPNvXBpgalk8009_2UgNHgYANOxsV_w6UUjZT1gbs8cpTO3TsKOhpHk6HehSRN9979J-kvTOmLoA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Yang, Wenhu</creator><creator>Yu, Shuhui</creator><creator>Sun, Rong</creator><creator>Du, Ruxu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110801</creationdate><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><author>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>CALCIUM FLUORIDE</topic><topic>CCTO</topic><topic>CERAMICS</topic><topic>COMPOSITES</topic><topic>COPPER OXIDE</topic><topic>Dielectric</topic><topic>DIELECTRIC CONSTANT</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>FLUORIDES</topic><topic>INSULATION (ELECTRICAL)</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polyvinylidene fluorides</topic><topic>PVDF</topic><topic>SIZE EFFECT</topic><topic>Titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wenhu</creatorcontrib><creatorcontrib>Yu, Shuhui</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wenhu</au><au>Yu, Shuhui</au><au>Sun, Rong</au><au>Du, Ruxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</atitle><jtitle>Acta materialia</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>59</volume><issue>14</issue><spage>5593</spage><epage>5602</epage><pages>5593-5602</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant (
ε
r) of the composite containing 40
vol.% nanosized CCTO filler is over 10
6 at 10
2
Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the
ε
r value is 35.7 (with 40
vol.%). The
ε
r and loss tangent (tan
δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10
4
Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051
eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.05.034</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2011-08, Vol.59 (14), p.5593-5602 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_907957414 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences CALCIUM FLUORIDE CCTO CERAMICS COMPOSITES COPPER OXIDE Dielectric DIELECTRIC CONSTANT Exact sciences and technology Fillers FLUORIDES INSULATION (ELECTRICAL) Metals. Metallurgy MICROSTRUCTURES Nanocomposites Nanomaterials Nanostructure Polyvinylidene fluorides PVDF SIZE EFFECT Titanates |
title | Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-%20and%20microsize%20effect%20of%20CCTO%20fillers%20on%20the%20dielectric%20behavior%20of%20CCTO/PVDF%20composites&rft.jtitle=Acta%20materialia&rft.au=Yang,%20Wenhu&rft.date=2011-08-01&rft.volume=59&rft.issue=14&rft.spage=5593&rft.epage=5602&rft.pages=5593-5602&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.05.034&rft_dat=%3Cproquest_cross%3E907957414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907957414&rft_id=info:pmid/&rft_els_id=S1359645411003648&rfr_iscdi=true |