Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites

The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2011-08, Vol.59 (14), p.5593-5602
Hauptverfasser: Yang, Wenhu, Yu, Shuhui, Sun, Rong, Du, Ruxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5602
container_issue 14
container_start_page 5593
container_title Acta materialia
container_volume 59
creator Yang, Wenhu
Yu, Shuhui
Sun, Rong
Du, Ruxu
description The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the composite containing 40 vol.% nanosized CCTO filler is over 10 6 at 10 2 Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the ε r value is 35.7 (with 40 vol.%). The ε r and loss tangent (tan δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10 4 Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051 eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.
doi_str_mv 10.1016/j.actamat.2011.05.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907957414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411003648</els_id><sourcerecordid>907957414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhk1poNu0P6GgS8nJ3pEl-eMUwiZpAqHJIcmtiLE8YrXY1kbyLrS_vlp202tPI0bPzMs8WfaNQ8GBV8tNgWbGEeeiBM4LUAUI-SFb8KYWeSmV-JjeQrV5JZX8lH2OcQPAy1rCIvv1EyefM5x6NjoTfHR_iJG1ZGbmLVutnh-ZdcNAITI_sXlNrHc0pO_gDOtojXvnwzu6fHq9vmXGj9u0aKb4JTuzOET6eqrn2cvtzfPqLn94_HG_unrIjaj5nGMteYUd1pXCslMEsuG87LiipqoM7yuD0KS2qLq2MWANb6gF0QO0FpRsxXl2cdy7Df5tR3HWo4uGhgEn8ruoW6hblUJkItWRPNwaA1m9DW7E8Ftz0AebeqNPNvXBpgalk8009_2UgNHgYANOxsV_w6UUjZT1gbs8cpTO3TsKOhpHk6HehSRN9979J-kvTOmLoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907957414</pqid></control><display><type>article</type><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</creator><creatorcontrib>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</creatorcontrib><description>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the composite containing 40 vol.% nanosized CCTO filler is over 10 6 at 10 2 Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the ε r value is 35.7 (with 40 vol.%). The ε r and loss tangent (tan δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10 4 Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051 eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.05.034</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CALCIUM FLUORIDE ; CCTO ; CERAMICS ; COMPOSITES ; COPPER OXIDE ; Dielectric ; DIELECTRIC CONSTANT ; Exact sciences and technology ; Fillers ; FLUORIDES ; INSULATION (ELECTRICAL) ; Metals. Metallurgy ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polyvinylidene fluorides ; PVDF ; SIZE EFFECT ; Titanates</subject><ispartof>Acta materialia, 2011-08, Vol.59 (14), p.5593-5602</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</citedby><cites>FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2011.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24384474$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Wenhu</creatorcontrib><creatorcontrib>Yu, Shuhui</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><title>Acta materialia</title><description>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the composite containing 40 vol.% nanosized CCTO filler is over 10 6 at 10 2 Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the ε r value is 35.7 (with 40 vol.%). The ε r and loss tangent (tan δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10 4 Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051 eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</description><subject>Applied sciences</subject><subject>CALCIUM FLUORIDE</subject><subject>CCTO</subject><subject>CERAMICS</subject><subject>COMPOSITES</subject><subject>COPPER OXIDE</subject><subject>Dielectric</subject><subject>DIELECTRIC CONSTANT</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>FLUORIDES</subject><subject>INSULATION (ELECTRICAL)</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polyvinylidene fluorides</subject><subject>PVDF</subject><subject>SIZE EFFECT</subject><subject>Titanates</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhk1poNu0P6GgS8nJ3pEl-eMUwiZpAqHJIcmtiLE8YrXY1kbyLrS_vlp202tPI0bPzMs8WfaNQ8GBV8tNgWbGEeeiBM4LUAUI-SFb8KYWeSmV-JjeQrV5JZX8lH2OcQPAy1rCIvv1EyefM5x6NjoTfHR_iJG1ZGbmLVutnh-ZdcNAITI_sXlNrHc0pO_gDOtojXvnwzu6fHq9vmXGj9u0aKb4JTuzOET6eqrn2cvtzfPqLn94_HG_unrIjaj5nGMteYUd1pXCslMEsuG87LiipqoM7yuD0KS2qLq2MWANb6gF0QO0FpRsxXl2cdy7Df5tR3HWo4uGhgEn8ruoW6hblUJkItWRPNwaA1m9DW7E8Ftz0AebeqNPNvXBpgalk8009_2UgNHgYANOxsV_w6UUjZT1gbs8cpTO3TsKOhpHk6HehSRN9979J-kvTOmLoA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Yang, Wenhu</creator><creator>Yu, Shuhui</creator><creator>Sun, Rong</creator><creator>Du, Ruxu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110801</creationdate><title>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</title><author>Yang, Wenhu ; Yu, Shuhui ; Sun, Rong ; Du, Ruxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a7416aba765a2b5e048112b15e866c1d6ca085e036b98c0fc18e903d009f05493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>CALCIUM FLUORIDE</topic><topic>CCTO</topic><topic>CERAMICS</topic><topic>COMPOSITES</topic><topic>COPPER OXIDE</topic><topic>Dielectric</topic><topic>DIELECTRIC CONSTANT</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>FLUORIDES</topic><topic>INSULATION (ELECTRICAL)</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polyvinylidene fluorides</topic><topic>PVDF</topic><topic>SIZE EFFECT</topic><topic>Titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wenhu</creatorcontrib><creatorcontrib>Yu, Shuhui</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Du, Ruxu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wenhu</au><au>Yu, Shuhui</au><au>Sun, Rong</au><au>Du, Ruxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites</atitle><jtitle>Acta materialia</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>59</volume><issue>14</issue><spage>5593</spage><epage>5602</epage><pages>5593-5602</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The microstructure and dielectric properties of composites comprising polyvinylidene fluoride (PVDF) and calcium copper titanate (CCTO) particles have been investigated. Nano- and microsized CCTO were employed separately and investigated comparatively. The effective dielectric constant ( ε r) of the composite containing 40 vol.% nanosized CCTO filler is over 10 6 at 10 2 Hz and room temperature, which is substantially higher than that of the composite containing microsized CCTO, of which the ε r value is 35.7 (with 40 vol.%). The ε r and loss tangent (tan δ) decrease with temperature for the composite containing nanosized CCTO, while the one with microsized CCTO shows the opposite tendency. For the composite with nanosized CCTO, the conductivity decreases sharply with increasing temperature in the low frequency range (100–10 4 Hz) and slightly increases in the high frequency range, while the conductivity of the composite with microsized CCTO is nearly independent of temperature. The theoretical calculations demonstrate that the activation energies of the composites containing nano- or microsized CCTO are −0.52 and 0.051 eV, indicating active interfaces and insulated grain boundaries in these two composites, respectively. Theoretical analysis also shows that the dielectric performance of the composite with nanosized CCTO does not follow the conventional mixing rules and the giant dielectric constant comes mainly from the interfacial polarization. The dielectric property of the composite containing microsized CCTO matches well with the Maxwell–Garnett and effective medium theory models, indicating insulate interfaces between the fillers and the matrix. The results obtained in this study indicate that the composite containing microsized CCTO may be suitable for embedded device applications, while the one with nanosized CCTO may find a new application in the temperature sensor field.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.05.034</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2011-08, Vol.59 (14), p.5593-5602
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_907957414
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
CALCIUM FLUORIDE
CCTO
CERAMICS
COMPOSITES
COPPER OXIDE
Dielectric
DIELECTRIC CONSTANT
Exact sciences and technology
Fillers
FLUORIDES
INSULATION (ELECTRICAL)
Metals. Metallurgy
MICROSTRUCTURES
Nanocomposites
Nanomaterials
Nanostructure
Polyvinylidene fluorides
PVDF
SIZE EFFECT
Titanates
title Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-%20and%20microsize%20effect%20of%20CCTO%20fillers%20on%20the%20dielectric%20behavior%20of%20CCTO/PVDF%20composites&rft.jtitle=Acta%20materialia&rft.au=Yang,%20Wenhu&rft.date=2011-08-01&rft.volume=59&rft.issue=14&rft.spage=5593&rft.epage=5602&rft.pages=5593-5602&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.05.034&rft_dat=%3Cproquest_cross%3E907957414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907957414&rft_id=info:pmid/&rft_els_id=S1359645411003648&rfr_iscdi=true