An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study

Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal on Soft Computing 2011-02, Vol.2 (1), p.26-33
Hauptverfasser: Prasadl, BDCN, Krishna Prasad, P. E. S. N, Sagar, y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 26
container_title International Journal on Soft Computing
container_volume 2
creator Prasadl, BDCN
Krishna Prasad, P. E. S. N
Sagar, y
description Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.
doi_str_mv 10.5121/ijsc.2011.2103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907956396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907956396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXplbNvwCHBj9ipj1HLS2oFUunZchynNUrsYKeIHvjvJGpPsxrN7Go_AG4xShkm-NF-RZ0ShHFKMKIXYEIIEQnPKbs8z_ngX4NZjLZEhDPBGWcT8Fc4WHRd8ErvYe_h0vyYxnfw6bczoYebY-xNG6F1cG0qq1UDl1btnI82wm20bgfXQ9M6A1dGBTcaRbPzwfb7oXZfxEHVA1SuggX8MKH2oVVOG7jpD9XxBlzVqolmdtYp2D4_fS5ek9X7y9uiWCUaM04TXeYso_OSkloLhKs5yxHWOSKG1vNSaM04RxlRVUY0qessy5nKSk4YFxppaugU3J32Do9-H0zsZWujNk2jnPGHKAXKxXBI8CGZnpI6-BiDqWUXbKvCUWIkR9JyJC1H0nIkTf8BnKxxog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907956396</pqid></control><display><type>article</type><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</creator><creatorcontrib>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</creatorcontrib><description>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</description><identifier>ISSN: 2229-7103</identifier><identifier>EISSN: 2229-6735</identifier><identifier>DOI: 10.5121/ijsc.2011.2103</identifier><language>eng</language><subject>Algorithms ; Asthma ; Design engineering ; Diagnosis ; Diseases ; Expert systems ; Machine learning ; Medical</subject><ispartof>International Journal on Soft Computing, 2011-02, Vol.2 (1), p.26-33</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Prasadl, BDCN</creatorcontrib><creatorcontrib>Krishna Prasad, P. E. S. N</creatorcontrib><creatorcontrib>Sagar, y</creatorcontrib><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><title>International Journal on Soft Computing</title><description>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</description><subject>Algorithms</subject><subject>Asthma</subject><subject>Design engineering</subject><subject>Diagnosis</subject><subject>Diseases</subject><subject>Expert systems</subject><subject>Machine learning</subject><subject>Medical</subject><issn>2229-7103</issn><issn>2229-6735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EElXplbNvwCHBj9ipj1HLS2oFUunZchynNUrsYKeIHvjvJGpPsxrN7Go_AG4xShkm-NF-RZ0ShHFKMKIXYEIIEQnPKbs8z_ngX4NZjLZEhDPBGWcT8Fc4WHRd8ErvYe_h0vyYxnfw6bczoYebY-xNG6F1cG0qq1UDl1btnI82wm20bgfXQ9M6A1dGBTcaRbPzwfb7oXZfxEHVA1SuggX8MKH2oVVOG7jpD9XxBlzVqolmdtYp2D4_fS5ek9X7y9uiWCUaM04TXeYso_OSkloLhKs5yxHWOSKG1vNSaM04RxlRVUY0qessy5nKSk4YFxppaugU3J32Do9-H0zsZWujNk2jnPGHKAXKxXBI8CGZnpI6-BiDqWUXbKvCUWIkR9JyJC1H0nIkTf8BnKxxog</recordid><startdate>20110228</startdate><enddate>20110228</enddate><creator>Prasadl, BDCN</creator><creator>Krishna Prasad, P. E. S. N</creator><creator>Sagar, y</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110228</creationdate><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><author>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Asthma</topic><topic>Design engineering</topic><topic>Diagnosis</topic><topic>Diseases</topic><topic>Expert systems</topic><topic>Machine learning</topic><topic>Medical</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasadl, BDCN</creatorcontrib><creatorcontrib>Krishna Prasad, P. E. S. N</creatorcontrib><creatorcontrib>Sagar, y</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal on Soft Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasadl, BDCN</au><au>Krishna Prasad, P. E. S. N</au><au>Sagar, y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</atitle><jtitle>International Journal on Soft Computing</jtitle><date>2011-02-28</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>26</spage><epage>33</epage><pages>26-33</pages><issn>2229-7103</issn><eissn>2229-6735</eissn><abstract>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</abstract><doi>10.5121/ijsc.2011.2103</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2229-7103
ispartof International Journal on Soft Computing, 2011-02, Vol.2 (1), p.26-33
issn 2229-7103
2229-6735
language eng
recordid cdi_proquest_miscellaneous_907956396
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Asthma
Design engineering
Diagnosis
Diseases
Expert systems
Machine learning
Medical
title An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Develop%20Expert%20Systems%20in%20Medical%20Diagnosis%20Using%20Machine%20Learning%20Algorithms%20(Asthma)%20and%20A%20Performance%20Study&rft.jtitle=International%20Journal%20on%20Soft%20Computing&rft.au=Prasadl,%20BDCN&rft.date=2011-02-28&rft.volume=2&rft.issue=1&rft.spage=26&rft.epage=33&rft.pages=26-33&rft.issn=2229-7103&rft.eissn=2229-6735&rft_id=info:doi/10.5121/ijsc.2011.2103&rft_dat=%3Cproquest_cross%3E907956396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907956396&rft_id=info:pmid/&rfr_iscdi=true