An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study
Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways...
Gespeichert in:
Veröffentlicht in: | International Journal on Soft Computing 2011-02, Vol.2 (1), p.26-33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | International Journal on Soft Computing |
container_volume | 2 |
creator | Prasadl, BDCN Krishna Prasad, P. E. S. N Sagar, y |
description | Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics. |
doi_str_mv | 10.5121/ijsc.2011.2103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907956396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907956396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXplbNvwCHBj9ipj1HLS2oFUunZchynNUrsYKeIHvjvJGpPsxrN7Go_AG4xShkm-NF-RZ0ShHFKMKIXYEIIEQnPKbs8z_ngX4NZjLZEhDPBGWcT8Fc4WHRd8ErvYe_h0vyYxnfw6bczoYebY-xNG6F1cG0qq1UDl1btnI82wm20bgfXQ9M6A1dGBTcaRbPzwfb7oXZfxEHVA1SuggX8MKH2oVVOG7jpD9XxBlzVqolmdtYp2D4_fS5ek9X7y9uiWCUaM04TXeYso_OSkloLhKs5yxHWOSKG1vNSaM04RxlRVUY0qessy5nKSk4YFxppaugU3J32Do9-H0zsZWujNk2jnPGHKAXKxXBI8CGZnpI6-BiDqWUXbKvCUWIkR9JyJC1H0nIkTf8BnKxxog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907956396</pqid></control><display><type>article</type><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</creator><creatorcontrib>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</creatorcontrib><description>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</description><identifier>ISSN: 2229-7103</identifier><identifier>EISSN: 2229-6735</identifier><identifier>DOI: 10.5121/ijsc.2011.2103</identifier><language>eng</language><subject>Algorithms ; Asthma ; Design engineering ; Diagnosis ; Diseases ; Expert systems ; Machine learning ; Medical</subject><ispartof>International Journal on Soft Computing, 2011-02, Vol.2 (1), p.26-33</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Prasadl, BDCN</creatorcontrib><creatorcontrib>Krishna Prasad, P. E. S. N</creatorcontrib><creatorcontrib>Sagar, y</creatorcontrib><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><title>International Journal on Soft Computing</title><description>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</description><subject>Algorithms</subject><subject>Asthma</subject><subject>Design engineering</subject><subject>Diagnosis</subject><subject>Diseases</subject><subject>Expert systems</subject><subject>Machine learning</subject><subject>Medical</subject><issn>2229-7103</issn><issn>2229-6735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EElXplbNvwCHBj9ipj1HLS2oFUunZchynNUrsYKeIHvjvJGpPsxrN7Go_AG4xShkm-NF-RZ0ShHFKMKIXYEIIEQnPKbs8z_ngX4NZjLZEhDPBGWcT8Fc4WHRd8ErvYe_h0vyYxnfw6bczoYebY-xNG6F1cG0qq1UDl1btnI82wm20bgfXQ9M6A1dGBTcaRbPzwfb7oXZfxEHVA1SuggX8MKH2oVVOG7jpD9XxBlzVqolmdtYp2D4_fS5ek9X7y9uiWCUaM04TXeYso_OSkloLhKs5yxHWOSKG1vNSaM04RxlRVUY0qessy5nKSk4YFxppaugU3J32Do9-H0zsZWujNk2jnPGHKAXKxXBI8CGZnpI6-BiDqWUXbKvCUWIkR9JyJC1H0nIkTf8BnKxxog</recordid><startdate>20110228</startdate><enddate>20110228</enddate><creator>Prasadl, BDCN</creator><creator>Krishna Prasad, P. E. S. N</creator><creator>Sagar, y</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110228</creationdate><title>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</title><author>Prasadl, BDCN ; Krishna Prasad, P. E. S. N ; Sagar, y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1563-cb75438b32fc901d85701c702e3f8b9cc566042ad42c2ff4475a4b62569c0c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Asthma</topic><topic>Design engineering</topic><topic>Diagnosis</topic><topic>Diseases</topic><topic>Expert systems</topic><topic>Machine learning</topic><topic>Medical</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasadl, BDCN</creatorcontrib><creatorcontrib>Krishna Prasad, P. E. S. N</creatorcontrib><creatorcontrib>Sagar, y</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal on Soft Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasadl, BDCN</au><au>Krishna Prasad, P. E. S. N</au><au>Sagar, y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study</atitle><jtitle>International Journal on Soft Computing</jtitle><date>2011-02-28</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>26</spage><epage>33</epage><pages>26-33</pages><issn>2229-7103</issn><eissn>2229-6735</eissn><abstract>Machine Intelligence plays a crucial role in the design of expert systems in medical diagnosis. In India most of the people suffering from some sort of diseases like asthma, diabetics, cancer and many more. We consider the disease asthma for diagnosis. The diagnosis of asthma can be done in two ways 1) through questionnaire and 2) through clinical data. We considered both approaches to design the expert system for diagnosis of asthma. We have chosen some machine learning algorithms such as Context sensitive auto-associative memory neural network model[1] (CSAMM), Backpropogation model, C4.5 algorithm, Bayesian Network, Particle Swarm Optimization [7]. We present a performance study on these algorithms in terms of accuracy and some outstanding characteristics.</abstract><doi>10.5121/ijsc.2011.2103</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2229-7103 |
ispartof | International Journal on Soft Computing, 2011-02, Vol.2 (1), p.26-33 |
issn | 2229-7103 2229-6735 |
language | eng |
recordid | cdi_proquest_miscellaneous_907956396 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Asthma Design engineering Diagnosis Diseases Expert systems Machine learning Medical |
title | An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Develop%20Expert%20Systems%20in%20Medical%20Diagnosis%20Using%20Machine%20Learning%20Algorithms%20(Asthma)%20and%20A%20Performance%20Study&rft.jtitle=International%20Journal%20on%20Soft%20Computing&rft.au=Prasadl,%20BDCN&rft.date=2011-02-28&rft.volume=2&rft.issue=1&rft.spage=26&rft.epage=33&rft.pages=26-33&rft.issn=2229-7103&rft.eissn=2229-6735&rft_id=info:doi/10.5121/ijsc.2011.2103&rft_dat=%3Cproquest_cross%3E907956396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907956396&rft_id=info:pmid/&rfr_iscdi=true |