Speckle removal from SAR images in the undecimated wavelet domain
Speckle reduction is approached as a minimum mean-square error (MMSE) filtering performed in the undecimated wavelet domain by means of an adaptive rescaling of the detail coefficients, whose amplitude is divided by the variance ratio of the noisy coefficient to the noise-free one. All the above qua...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2002-11, Vol.40 (11), p.2363-2374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2374 |
---|---|
container_issue | 11 |
container_start_page | 2363 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 40 |
creator | Argenti, F. Alparone, L. |
description | Speckle reduction is approached as a minimum mean-square error (MMSE) filtering performed in the undecimated wavelet domain by means of an adaptive rescaling of the detail coefficients, whose amplitude is divided by the variance ratio of the noisy coefficient to the noise-free one. All the above quantities are analytically calculated from the speckled image, the variance and autocorrelation of the fading variable, and the wavelet filters only, without resorting to any model to describe the underlying backscatter. On the test image Lena corrupted by synthetic speckle, the proposed method outperforms Kuan's local linear MMSE filtering by almost 3-dB signal-to-noise ratio. When true synthetic aperture radar (SAR) images are concerned, empirical criteria based on distributions of multiscale local coefficient of variation, calculated in the undecimated wavelet domain, are introduced to mitigate the rescaling of coefficients in highly heterogeneous areas where the speckle does not obey a fully developed model, to avoid blurring strong textures and point targets. Experiments carried out on widespread test SAR images and on a speckled mosaic image, comprising synthetic shapes, textures, and details from optical images, demonstrate that the visual quality of the results is excellent in terms of both background smoothing and preservation of edge sharpness, textures, and point targets. The absence of decimation in the wavelet decomposition avoids typical impairments often introduced by critically subsampled wavelet-based denoising. |
doi_str_mv | 10.1109/TGRS.2002.805083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907956205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1166595</ieee_id><sourcerecordid>907956205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-131af7d5838ff22a9d85b8071035753a61924c52512cc324740a93289eaeaaab3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_AgCl2194KXIFR7me3L7-S4iNqCUHDtOcTMm3Z0fmyTWUv_ezOsIPSgp0Dyee8l-RLyicGSMXBf765v10sOwJcWFFixRxZMKVuBlnKfLIA5XXHr-AdymPMDAJOKmQVZrTcYHzukCfvxKXS0SWNP16tb2vbhF2baDnT6jXQ71BjL1oQ1_RuesMOJ1mMf2uGYHDShy_jxZT0iP68u7y6-VTc_rr9frG6qKI2eKiZYaEytrLBNw3lwtVX3FgwDoYwSQTPHZVRcMR6j4NJICE6UG2PAEMK9OCLnu76bNP7ZYp583-aIXRcGHLfZOzBOaQ6qyLM3JXcgpSyD34VWc2u4eR8a7cp0XuCXNyEzBgq20hV6-h99GLdpKF_orZUKBGMzgh2Kacw5YeM3qaSQ_nkGfs7dz7n7OXe_y72UfH7pG3IMXZPCENv8WielEeDmN53sXIuIr8dMa-WUeAax2LIz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884503119</pqid></control><display><type>article</type><title>Speckle removal from SAR images in the undecimated wavelet domain</title><source>IEEE Electronic Library (IEL)</source><creator>Argenti, F. ; Alparone, L.</creator><creatorcontrib>Argenti, F. ; Alparone, L.</creatorcontrib><description>Speckle reduction is approached as a minimum mean-square error (MMSE) filtering performed in the undecimated wavelet domain by means of an adaptive rescaling of the detail coefficients, whose amplitude is divided by the variance ratio of the noisy coefficient to the noise-free one. All the above quantities are analytically calculated from the speckled image, the variance and autocorrelation of the fading variable, and the wavelet filters only, without resorting to any model to describe the underlying backscatter. On the test image Lena corrupted by synthetic speckle, the proposed method outperforms Kuan's local linear MMSE filtering by almost 3-dB signal-to-noise ratio. When true synthetic aperture radar (SAR) images are concerned, empirical criteria based on distributions of multiscale local coefficient of variation, calculated in the undecimated wavelet domain, are introduced to mitigate the rescaling of coefficients in highly heterogeneous areas where the speckle does not obey a fully developed model, to avoid blurring strong textures and point targets. Experiments carried out on widespread test SAR images and on a speckled mosaic image, comprising synthetic shapes, textures, and details from optical images, demonstrate that the visual quality of the results is excellent in terms of both background smoothing and preservation of edge sharpness, textures, and point targets. The absence of decimation in the wavelet decomposition avoids typical impairments often introduced by critically subsampled wavelet-based denoising.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.805083</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive filters ; Analysis of variance ; Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Filtering ; Filtration ; Image analysis ; Internal geophysics ; Mathematical models ; Mean square errors ; Noise level ; Noise reduction ; Signal to noise ratio ; Speckle ; Studies ; Surface layer ; Synthetic aperture radar ; Testing ; Texture ; Wavelet ; Wavelet domain</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-11, Vol.40 (11), p.2363-2374</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-131af7d5838ff22a9d85b8071035753a61924c52512cc324740a93289eaeaaab3</citedby><cites>FETCH-LOGICAL-c476t-131af7d5838ff22a9d85b8071035753a61924c52512cc324740a93289eaeaaab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1166595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1166595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14473097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Argenti, F.</creatorcontrib><creatorcontrib>Alparone, L.</creatorcontrib><title>Speckle removal from SAR images in the undecimated wavelet domain</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Speckle reduction is approached as a minimum mean-square error (MMSE) filtering performed in the undecimated wavelet domain by means of an adaptive rescaling of the detail coefficients, whose amplitude is divided by the variance ratio of the noisy coefficient to the noise-free one. All the above quantities are analytically calculated from the speckled image, the variance and autocorrelation of the fading variable, and the wavelet filters only, without resorting to any model to describe the underlying backscatter. On the test image Lena corrupted by synthetic speckle, the proposed method outperforms Kuan's local linear MMSE filtering by almost 3-dB signal-to-noise ratio. When true synthetic aperture radar (SAR) images are concerned, empirical criteria based on distributions of multiscale local coefficient of variation, calculated in the undecimated wavelet domain, are introduced to mitigate the rescaling of coefficients in highly heterogeneous areas where the speckle does not obey a fully developed model, to avoid blurring strong textures and point targets. Experiments carried out on widespread test SAR images and on a speckled mosaic image, comprising synthetic shapes, textures, and details from optical images, demonstrate that the visual quality of the results is excellent in terms of both background smoothing and preservation of edge sharpness, textures, and point targets. The absence of decimation in the wavelet decomposition avoids typical impairments often introduced by critically subsampled wavelet-based denoising.</description><subject>Adaptive filters</subject><subject>Analysis of variance</subject><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image analysis</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Signal to noise ratio</subject><subject>Speckle</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Synthetic aperture radar</subject><subject>Testing</subject><subject>Texture</subject><subject>Wavelet</subject><subject>Wavelet domain</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LHDEUB_AgCl2194KXIFR7me3L7-S4iNqCUHDtOcTMm3Z0fmyTWUv_ezOsIPSgp0Dyee8l-RLyicGSMXBf765v10sOwJcWFFixRxZMKVuBlnKfLIA5XXHr-AdymPMDAJOKmQVZrTcYHzukCfvxKXS0SWNP16tb2vbhF2baDnT6jXQ71BjL1oQ1_RuesMOJ1mMf2uGYHDShy_jxZT0iP68u7y6-VTc_rr9frG6qKI2eKiZYaEytrLBNw3lwtVX3FgwDoYwSQTPHZVRcMR6j4NJICE6UG2PAEMK9OCLnu76bNP7ZYp583-aIXRcGHLfZOzBOaQ6qyLM3JXcgpSyD34VWc2u4eR8a7cp0XuCXNyEzBgq20hV6-h99GLdpKF_orZUKBGMzgh2Kacw5YeM3qaSQ_nkGfs7dz7n7OXe_y72UfH7pG3IMXZPCENv8WielEeDmN53sXIuIr8dMa-WUeAax2LIz</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Argenti, F.</creator><creator>Alparone, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20021101</creationdate><title>Speckle removal from SAR images in the undecimated wavelet domain</title><author>Argenti, F. ; Alparone, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-131af7d5838ff22a9d85b8071035753a61924c52512cc324740a93289eaeaaab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive filters</topic><topic>Analysis of variance</topic><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image analysis</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Signal to noise ratio</topic><topic>Speckle</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Synthetic aperture radar</topic><topic>Testing</topic><topic>Texture</topic><topic>Wavelet</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argenti, F.</creatorcontrib><creatorcontrib>Alparone, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Argenti, F.</au><au>Alparone, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speckle removal from SAR images in the undecimated wavelet domain</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-11-01</date><risdate>2002</risdate><volume>40</volume><issue>11</issue><spage>2363</spage><epage>2374</epage><pages>2363-2374</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Speckle reduction is approached as a minimum mean-square error (MMSE) filtering performed in the undecimated wavelet domain by means of an adaptive rescaling of the detail coefficients, whose amplitude is divided by the variance ratio of the noisy coefficient to the noise-free one. All the above quantities are analytically calculated from the speckled image, the variance and autocorrelation of the fading variable, and the wavelet filters only, without resorting to any model to describe the underlying backscatter. On the test image Lena corrupted by synthetic speckle, the proposed method outperforms Kuan's local linear MMSE filtering by almost 3-dB signal-to-noise ratio. When true synthetic aperture radar (SAR) images are concerned, empirical criteria based on distributions of multiscale local coefficient of variation, calculated in the undecimated wavelet domain, are introduced to mitigate the rescaling of coefficients in highly heterogeneous areas where the speckle does not obey a fully developed model, to avoid blurring strong textures and point targets. Experiments carried out on widespread test SAR images and on a speckled mosaic image, comprising synthetic shapes, textures, and details from optical images, demonstrate that the visual quality of the results is excellent in terms of both background smoothing and preservation of edge sharpness, textures, and point targets. The absence of decimation in the wavelet decomposition avoids typical impairments often introduced by critically subsampled wavelet-based denoising.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.805083</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2002-11, Vol.40 (11), p.2363-2374 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_907956205 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Analysis of variance Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Filtering Filtration Image analysis Internal geophysics Mathematical models Mean square errors Noise level Noise reduction Signal to noise ratio Speckle Studies Surface layer Synthetic aperture radar Testing Texture Wavelet Wavelet domain |
title | Speckle removal from SAR images in the undecimated wavelet domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speckle%20removal%20from%20SAR%20images%20in%20the%20undecimated%20wavelet%20domain&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Argenti,%20F.&rft.date=2002-11-01&rft.volume=40&rft.issue=11&rft.spage=2363&rft.epage=2374&rft.pages=2363-2374&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.805083&rft_dat=%3Cproquest_RIE%3E907956205%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884503119&rft_id=info:pmid/&rft_ieee_id=1166595&rfr_iscdi=true |