Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images
This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characteriz...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2011-01, Vol.22 (1), p.171-180 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Machine vision and applications |
container_volume | 22 |
creator | Saint-Pierre, Charles-Auguste Boisvert, Jonathan Grimard, Guy Cheriet, Farida |
description | This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique. |
doi_str_mv | 10.1007/s00138-007-0099-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907953761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907953761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlMIPYPPGFDjHiZ2MqHxKlVhgthznHFIlcWs7A_8el3RmON2703tPd4-QWwb3DEA-BADGqyzBVHWdiTOyYgXPMyZFfU5WUCdcQZ1fkqsQdgBQSFmsyOEJI5rYu4nqqaXGeX8anaVhj2YetKce7bCsA7XOUz1HN-rYGxpm3_VGDzQ6N9CA3YhT1H8G_UTjt_PauGDcPnH7UXcYrsmF1UPAm1Nfk6-X58_NW7b9eH3fPG4zw3OIWYWltm1elhKF5MBtWUkmmWl10xa5BV1qadvCCBCsEU2DHK1FVomiznllgK_J3eK79-4wY4hq7IPBYdATujmoGmRdcilYYrKFabwLIf2q9j7d6n8UA3VMVy3pqiM8pqtE0uSLJiTu1KFXOzf7KT30j-gXDtCAJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907953761</pqid></control><display><type>article</type><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</creator><creatorcontrib>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</creatorcontrib><description>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-007-0099-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Machine vision ; Networks ; Original Paper ; Pattern Recognition ; Reflection ; Segmentation ; Specular reflection ; Spikes ; Surgeries</subject><ispartof>Machine vision and applications, 2011-01, Vol.22 (1), p.171-180</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</citedby><cites>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-007-0099-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-007-0099-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Saint-Pierre, Charles-Auguste</creatorcontrib><creatorcontrib>Boisvert, Jonathan</creatorcontrib><creatorcontrib>Grimard, Guy</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Machine vision</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Reflection</subject><subject>Segmentation</subject><subject>Specular reflection</subject><subject>Spikes</subject><subject>Surgeries</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIlMIPYPPGFDjHiZ2MqHxKlVhgthznHFIlcWs7A_8el3RmON2703tPd4-QWwb3DEA-BADGqyzBVHWdiTOyYgXPMyZFfU5WUCdcQZ1fkqsQdgBQSFmsyOEJI5rYu4nqqaXGeX8anaVhj2YetKce7bCsA7XOUz1HN-rYGxpm3_VGDzQ6N9CA3YhT1H8G_UTjt_PauGDcPnH7UXcYrsmF1UPAm1Nfk6-X58_NW7b9eH3fPG4zw3OIWYWltm1elhKF5MBtWUkmmWl10xa5BV1qadvCCBCsEU2DHK1FVomiznllgK_J3eK79-4wY4hq7IPBYdATujmoGmRdcilYYrKFabwLIf2q9j7d6n8UA3VMVy3pqiM8pqtE0uSLJiTu1KFXOzf7KT30j-gXDtCAJA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Saint-Pierre, Charles-Auguste</creator><creator>Boisvert, Jonathan</creator><creator>Grimard, Guy</creator><creator>Cheriet, Farida</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><author>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Machine vision</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Reflection</topic><topic>Segmentation</topic><topic>Specular reflection</topic><topic>Spikes</topic><topic>Surgeries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saint-Pierre, Charles-Auguste</creatorcontrib><creatorcontrib>Boisvert, Jonathan</creatorcontrib><creatorcontrib>Grimard, Guy</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saint-Pierre, Charles-Auguste</au><au>Boisvert, Jonathan</au><au>Grimard, Guy</au><au>Cheriet, Farida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>22</volume><issue>1</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-007-0099-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2011-01, Vol.22 (1), p.171-180 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_miscellaneous_907953761 |
source | SpringerLink Journals - AutoHoldings |
subjects | Communications Engineering Computer Science Image Processing and Computer Vision Machine vision Networks Original Paper Pattern Recognition Reflection Segmentation Specular reflection Spikes Surgeries |
title | Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20correction%20of%20specular%20reflections%20for%20automatic%20surgical%20tool%20segmentation%20in%20thoracoscopic%20images&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Saint-Pierre,%20Charles-Auguste&rft.date=2011-01-01&rft.volume=22&rft.issue=1&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-007-0099-6&rft_dat=%3Cproquest_cross%3E907953761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907953761&rft_id=info:pmid/&rfr_iscdi=true |