Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images

This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2011-01, Vol.22 (1), p.171-180
Hauptverfasser: Saint-Pierre, Charles-Auguste, Boisvert, Jonathan, Grimard, Guy, Cheriet, Farida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 1
container_start_page 171
container_title Machine vision and applications
container_volume 22
creator Saint-Pierre, Charles-Auguste
Boisvert, Jonathan
Grimard, Guy
Cheriet, Farida
description This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.
doi_str_mv 10.1007/s00138-007-0099-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907953761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907953761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlMIPYPPGFDjHiZ2MqHxKlVhgthznHFIlcWs7A_8el3RmON2703tPd4-QWwb3DEA-BADGqyzBVHWdiTOyYgXPMyZFfU5WUCdcQZ1fkqsQdgBQSFmsyOEJI5rYu4nqqaXGeX8anaVhj2YetKce7bCsA7XOUz1HN-rYGxpm3_VGDzQ6N9CA3YhT1H8G_UTjt_PauGDcPnH7UXcYrsmF1UPAm1Nfk6-X58_NW7b9eH3fPG4zw3OIWYWltm1elhKF5MBtWUkmmWl10xa5BV1qadvCCBCsEU2DHK1FVomiznllgK_J3eK79-4wY4hq7IPBYdATujmoGmRdcilYYrKFabwLIf2q9j7d6n8UA3VMVy3pqiM8pqtE0uSLJiTu1KFXOzf7KT30j-gXDtCAJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907953761</pqid></control><display><type>article</type><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</creator><creatorcontrib>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</creatorcontrib><description>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-007-0099-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Machine vision ; Networks ; Original Paper ; Pattern Recognition ; Reflection ; Segmentation ; Specular reflection ; Spikes ; Surgeries</subject><ispartof>Machine vision and applications, 2011-01, Vol.22 (1), p.171-180</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</citedby><cites>FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-007-0099-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-007-0099-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Saint-Pierre, Charles-Auguste</creatorcontrib><creatorcontrib>Boisvert, Jonathan</creatorcontrib><creatorcontrib>Grimard, Guy</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Machine vision</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Reflection</subject><subject>Segmentation</subject><subject>Specular reflection</subject><subject>Spikes</subject><subject>Surgeries</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIlMIPYPPGFDjHiZ2MqHxKlVhgthznHFIlcWs7A_8el3RmON2703tPd4-QWwb3DEA-BADGqyzBVHWdiTOyYgXPMyZFfU5WUCdcQZ1fkqsQdgBQSFmsyOEJI5rYu4nqqaXGeX8anaVhj2YetKce7bCsA7XOUz1HN-rYGxpm3_VGDzQ6N9CA3YhT1H8G_UTjt_PauGDcPnH7UXcYrsmF1UPAm1Nfk6-X58_NW7b9eH3fPG4zw3OIWYWltm1elhKF5MBtWUkmmWl10xa5BV1qadvCCBCsEU2DHK1FVomiznllgK_J3eK79-4wY4hq7IPBYdATujmoGmRdcilYYrKFabwLIf2q9j7d6n8UA3VMVy3pqiM8pqtE0uSLJiTu1KFXOzf7KT30j-gXDtCAJA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Saint-Pierre, Charles-Auguste</creator><creator>Boisvert, Jonathan</creator><creator>Grimard, Guy</creator><creator>Cheriet, Farida</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</title><author>Saint-Pierre, Charles-Auguste ; Boisvert, Jonathan ; Grimard, Guy ; Cheriet, Farida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-8e5afd2557e67303f587171cdabd42f0a5a7fd4c6061b6bbe3effe18649238c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Machine vision</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Reflection</topic><topic>Segmentation</topic><topic>Specular reflection</topic><topic>Spikes</topic><topic>Surgeries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saint-Pierre, Charles-Auguste</creatorcontrib><creatorcontrib>Boisvert, Jonathan</creatorcontrib><creatorcontrib>Grimard, Guy</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saint-Pierre, Charles-Auguste</au><au>Boisvert, Jonathan</au><au>Grimard, Guy</au><au>Cheriet, Farida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>22</volume><issue>1</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>This paper presents an algorithm that automatically detects and corrects specular reflections in thoracoscopic images and its application in the context of automatic segmentation of surgical tools. The detection is done by isolating the spike component of the specular reflection which is characterized by a bump at the end of the histogram of thoracoscopic images. The specular lobe is then extracted in the neighborhood of the spike component of the reflection. The result is a mask of the reflections positions in the image. Thereafter, the image is corrected using Oliveira et al.’s digital inpainting method. The automatic segmentation of surgical tools using the corrected images is then demonstrated. Results of the segmentation with and without the specular reflection elimination technique are compared. Moreover, 108 images extracted from 5 different surgeries performed under various conditions were considered to demonstrate the effectiveness of the proposed technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-007-0099-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2011-01, Vol.22 (1), p.171-180
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_miscellaneous_907953761
source SpringerLink Journals - AutoHoldings
subjects Communications Engineering
Computer Science
Image Processing and Computer Vision
Machine vision
Networks
Original Paper
Pattern Recognition
Reflection
Segmentation
Specular reflection
Spikes
Surgeries
title Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20correction%20of%20specular%20reflections%20for%20automatic%20surgical%20tool%20segmentation%20in%20thoracoscopic%20images&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Saint-Pierre,%20Charles-Auguste&rft.date=2011-01-01&rft.volume=22&rft.issue=1&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-007-0099-6&rft_dat=%3Cproquest_cross%3E907953761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907953761&rft_id=info:pmid/&rfr_iscdi=true