Motion of three viscoelastic planets in the field of their mutual attraction forces
Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Usin...
Gespeichert in:
Veröffentlicht in: | Cosmic research 2009-10, Vol.47 (5), p.438-443 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | 5 |
container_start_page | 438 |
container_title | Cosmic research |
container_volume | 47 |
creator | Vil’ke, V. G. Shatina, A. V. Shatina, L. S. |
description | Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem. |
doi_str_mv | 10.1134/S001095250905013X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907952055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671364968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2bfd6f2bafb8b167cb8b5b7b6c3083ad5e2e78124b22b27f2ff274b01aa895363</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AG_Bi16qk6RJ2qMs_gPFwyp4K0k20S7dZk1SwW9v6gqCoqc5vN97M49B6JDAKSGsPJsDEKg55VADB8KettCECKgKBpJvo8koF6O-i_ZiXAJALZmYoPmdT63vsXc4vQRr8Vsbjbediqk1eN2p3qaI2z6rFrvWdosNatuAV0MaVIdVSkGZzxTng7FxH-041UV78DWn6PHy4mF2XdzeX93Mzm8LwxhNBdVuIRzVyulKEyFNHlxLLQyDiqkFt9TKitBSU6qpdNQ5KksNRKmq5kywKTre5K6Dfx1sTM0qH2-78Wg_xKYGmRsD55k8-ZfM2wkTZS2qjB79QJd-CH3u0VQyAyUAyxDZQCb4GIN1zTq0KxXeGwLN-I_m1z-yh248MbP9sw3fwX-bPgAWDIw3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879684003</pqid></control><display><type>article</type><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</creator><creatorcontrib>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</creatorcontrib><description>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</description><identifier>ISSN: 0010-9525</identifier><identifier>EISSN: 1608-3075</identifier><identifier>DOI: 10.1134/S001095250905013X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Approximation ; Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Attraction ; Differential equations ; Equations of motion ; Mathematical models ; Ordinary differential equations ; Perturbation methods ; Physics ; Physics and Astronomy ; Planets ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Studies ; Viscoelasticity</subject><ispartof>Cosmic research, 2009-10, Vol.47 (5), p.438-443</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001095250905013X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001095250905013X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Vil’ke, V. G.</creatorcontrib><creatorcontrib>Shatina, A. V.</creatorcontrib><creatorcontrib>Shatina, L. S.</creatorcontrib><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><title>Cosmic research</title><addtitle>Cosmic Res</addtitle><description>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Attraction</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planets</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Studies</subject><subject>Viscoelasticity</subject><issn>0010-9525</issn><issn>1608-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouK5-AG_Bi16qk6RJ2qMs_gPFwyp4K0k20S7dZk1SwW9v6gqCoqc5vN97M49B6JDAKSGsPJsDEKg55VADB8KettCECKgKBpJvo8koF6O-i_ZiXAJALZmYoPmdT63vsXc4vQRr8Vsbjbediqk1eN2p3qaI2z6rFrvWdosNatuAV0MaVIdVSkGZzxTng7FxH-041UV78DWn6PHy4mF2XdzeX93Mzm8LwxhNBdVuIRzVyulKEyFNHlxLLQyDiqkFt9TKitBSU6qpdNQ5KksNRKmq5kywKTre5K6Dfx1sTM0qH2-78Wg_xKYGmRsD55k8-ZfM2wkTZS2qjB79QJd-CH3u0VQyAyUAyxDZQCb4GIN1zTq0KxXeGwLN-I_m1z-yh248MbP9sw3fwX-bPgAWDIw3</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Vil’ke, V. G.</creator><creator>Shatina, A. V.</creator><creator>Shatina, L. S.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>200910</creationdate><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><author>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2bfd6f2bafb8b167cb8b5b7b6c3083ad5e2e78124b22b27f2ff274b01aa895363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Attraction</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planets</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Studies</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vil’ke, V. G.</creatorcontrib><creatorcontrib>Shatina, A. V.</creatorcontrib><creatorcontrib>Shatina, L. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cosmic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vil’ke, V. G.</au><au>Shatina, A. V.</au><au>Shatina, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of three viscoelastic planets in the field of their mutual attraction forces</atitle><jtitle>Cosmic research</jtitle><stitle>Cosmic Res</stitle><date>2009-10</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>438</spage><epage>443</epage><pages>438-443</pages><issn>0010-9525</issn><eissn>1608-3075</eissn><abstract>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S001095250905013X</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-9525 |
ispartof | Cosmic research, 2009-10, Vol.47 (5), p.438-443 |
issn | 0010-9525 1608-3075 |
language | eng |
recordid | cdi_proquest_miscellaneous_907952055 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Astronomy Astrophysics and Astroparticles Astrophysics and Cosmology Attraction Differential equations Equations of motion Mathematical models Ordinary differential equations Perturbation methods Physics Physics and Astronomy Planets Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Studies Viscoelasticity |
title | Motion of three viscoelastic planets in the field of their mutual attraction forces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20three%20viscoelastic%20planets%20in%20the%20field%20of%20their%20mutual%20attraction%20forces&rft.jtitle=Cosmic%20research&rft.au=Vil%E2%80%99ke,%20V.%20G.&rft.date=2009-10&rft.volume=47&rft.issue=5&rft.spage=438&rft.epage=443&rft.pages=438-443&rft.issn=0010-9525&rft.eissn=1608-3075&rft_id=info:doi/10.1134/S001095250905013X&rft_dat=%3Cproquest_cross%3E1671364968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879684003&rft_id=info:pmid/&rfr_iscdi=true |