Motion of three viscoelastic planets in the field of their mutual attraction forces

Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cosmic research 2009-10, Vol.47 (5), p.438-443
Hauptverfasser: Vil’ke, V. G., Shatina, A. V., Shatina, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 5
container_start_page 438
container_title Cosmic research
container_volume 47
creator Vil’ke, V. G.
Shatina, A. V.
Shatina, L. S.
description Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.
doi_str_mv 10.1134/S001095250905013X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907952055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671364968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2bfd6f2bafb8b167cb8b5b7b6c3083ad5e2e78124b22b27f2ff274b01aa895363</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AG_Bi16qk6RJ2qMs_gPFwyp4K0k20S7dZk1SwW9v6gqCoqc5vN97M49B6JDAKSGsPJsDEKg55VADB8KettCECKgKBpJvo8koF6O-i_ZiXAJALZmYoPmdT63vsXc4vQRr8Vsbjbediqk1eN2p3qaI2z6rFrvWdosNatuAV0MaVIdVSkGZzxTng7FxH-041UV78DWn6PHy4mF2XdzeX93Mzm8LwxhNBdVuIRzVyulKEyFNHlxLLQyDiqkFt9TKitBSU6qpdNQ5KksNRKmq5kywKTre5K6Dfx1sTM0qH2-78Wg_xKYGmRsD55k8-ZfM2wkTZS2qjB79QJd-CH3u0VQyAyUAyxDZQCb4GIN1zTq0KxXeGwLN-I_m1z-yh248MbP9sw3fwX-bPgAWDIw3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879684003</pqid></control><display><type>article</type><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</creator><creatorcontrib>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</creatorcontrib><description>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</description><identifier>ISSN: 0010-9525</identifier><identifier>EISSN: 1608-3075</identifier><identifier>DOI: 10.1134/S001095250905013X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Approximation ; Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Attraction ; Differential equations ; Equations of motion ; Mathematical models ; Ordinary differential equations ; Perturbation methods ; Physics ; Physics and Astronomy ; Planets ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Studies ; Viscoelasticity</subject><ispartof>Cosmic research, 2009-10, Vol.47 (5), p.438-443</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001095250905013X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001095250905013X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Vil’ke, V. G.</creatorcontrib><creatorcontrib>Shatina, A. V.</creatorcontrib><creatorcontrib>Shatina, L. S.</creatorcontrib><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><title>Cosmic research</title><addtitle>Cosmic Res</addtitle><description>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Attraction</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planets</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Studies</subject><subject>Viscoelasticity</subject><issn>0010-9525</issn><issn>1608-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouK5-AG_Bi16qk6RJ2qMs_gPFwyp4K0k20S7dZk1SwW9v6gqCoqc5vN97M49B6JDAKSGsPJsDEKg55VADB8KettCECKgKBpJvo8koF6O-i_ZiXAJALZmYoPmdT63vsXc4vQRr8Vsbjbediqk1eN2p3qaI2z6rFrvWdosNatuAV0MaVIdVSkGZzxTng7FxH-041UV78DWn6PHy4mF2XdzeX93Mzm8LwxhNBdVuIRzVyulKEyFNHlxLLQyDiqkFt9TKitBSU6qpdNQ5KksNRKmq5kywKTre5K6Dfx1sTM0qH2-78Wg_xKYGmRsD55k8-ZfM2wkTZS2qjB79QJd-CH3u0VQyAyUAyxDZQCb4GIN1zTq0KxXeGwLN-I_m1z-yh248MbP9sw3fwX-bPgAWDIw3</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Vil’ke, V. G.</creator><creator>Shatina, A. V.</creator><creator>Shatina, L. S.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>200910</creationdate><title>Motion of three viscoelastic planets in the field of their mutual attraction forces</title><author>Vil’ke, V. G. ; Shatina, A. V. ; Shatina, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2bfd6f2bafb8b167cb8b5b7b6c3083ad5e2e78124b22b27f2ff274b01aa895363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Attraction</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planets</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Studies</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vil’ke, V. G.</creatorcontrib><creatorcontrib>Shatina, A. V.</creatorcontrib><creatorcontrib>Shatina, L. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cosmic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vil’ke, V. G.</au><au>Shatina, A. V.</au><au>Shatina, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of three viscoelastic planets in the field of their mutual attraction forces</atitle><jtitle>Cosmic research</jtitle><stitle>Cosmic Res</stitle><date>2009-10</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>438</spage><epage>443</epage><pages>438-443</pages><issn>0010-9525</issn><eissn>1608-3075</eissn><abstract>Translational-rotational motion of three planets modeled by viscoelastic balls in the gravitational field of mutual attraction is studied in this paper. The system of equations of motion for the mechanical system under consideration is deduced from the d’Alembert-Lagrange variational principle. Using the method of separation of motions, an approximate system of ordinary differential equations, describing the translational-rotational motion of the planets, is obtained with taking into account perturbations caused by elasticity and dissipation. The found steady-state motion of the system is an analog to triangular libration points in the classical three-body problem.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S001095250905013X</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-9525
ispartof Cosmic research, 2009-10, Vol.47 (5), p.438-443
issn 0010-9525
1608-3075
language eng
recordid cdi_proquest_miscellaneous_907952055
source SpringerLink Journals - AutoHoldings
subjects Approximation
Astronomy
Astrophysics and Astroparticles
Astrophysics and Cosmology
Attraction
Differential equations
Equations of motion
Mathematical models
Ordinary differential equations
Perturbation methods
Physics
Physics and Astronomy
Planets
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Studies
Viscoelasticity
title Motion of three viscoelastic planets in the field of their mutual attraction forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20three%20viscoelastic%20planets%20in%20the%20field%20of%20their%20mutual%20attraction%20forces&rft.jtitle=Cosmic%20research&rft.au=Vil%E2%80%99ke,%20V.%20G.&rft.date=2009-10&rft.volume=47&rft.issue=5&rft.spage=438&rft.epage=443&rft.pages=438-443&rft.issn=0010-9525&rft.eissn=1608-3075&rft_id=info:doi/10.1134/S001095250905013X&rft_dat=%3Cproquest_cross%3E1671364968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879684003&rft_id=info:pmid/&rfr_iscdi=true