One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids
The optimization problem is considered for the trajectory of a spacecraft mission to a group of asteroids. The ratio of the final spacecraft mass to the flight time is maximized. The spacecraft is controlled by changing the value and direction of the jet engine thrust (small thrust). The motion of t...
Gespeichert in:
Veröffentlicht in: | Cosmic research 2009-10, Vol.47 (5), p.426-437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 5 |
container_start_page | 426 |
container_title | Cosmic research |
container_volume | 47 |
creator | Grigoriev, I. S. Zapletin, M. P. |
description | The optimization problem is considered for the trajectory of a spacecraft mission to a group of asteroids. The ratio of the final spacecraft mass to the flight time is maximized. The spacecraft is controlled by changing the value and direction of the jet engine thrust (small thrust). The motion of the Earth, asteroids, and the spacecraft proceeds in the central Newtonian gravitational field of the Sun. The Earth and asteroids are considered as point objects moving in preset elliptical orbits. The spacecraft departure from the Earth is considered in the context of the method of a point-like sphere of action, and the excess of hyperbolic velocity is limited. It is required sequentially to have a rendezvous with asteroids from four various groups, one from each group; it is necessary to be on the first three asteroids for no less than 90 days. The trajectory is finished by arrival at the last asteroid. Constraints on the time of departure from the Earth, flight duration, and final mass are taken into account in this problem. |
doi_str_mv | 10.1134/S0010952509050128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907952031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410113851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-821883ae87012e9d281163c8a367e83ebdc9f877f0cad4ec30f6ce9fa046a0fa3</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG_Bi6fqS9M2yVEW_8HCHtRzyaYvS5duU5NUcD-9KSsIiqd3mN8M84aQSwY3jPHi9gWAgSrzEhSUwHJ5RGasAplxEOUxmU1yNumn5CyELQAowasZWa96pG6I7a7d69i6ng7erTvcUes8jV5v0UTnWwzUWRoGbdB4bSP12De4_3BjoLs2hMkZHdV04904TKwOEb1rm3BOTqzuAl583zl5e7h_XTxly9Xj8-JumRleiJjJnEnJNUqR6qNqcslYxY3UvBIoOa4bo6wUwoLRTYGGg60MKquhqDRYzefk-pCbPngfMcQ6FTPYdbrHVLNWINIAwFkir36RWzf6PpWrpVCVLABEgtgBMt6F4NHWg2932n_WDOpp8_rP5smTHzwhsf0G_U_w_6YvfNGEUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879684007</pqid></control><display><type>article</type><title>One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grigoriev, I. S. ; Zapletin, M. P.</creator><creatorcontrib>Grigoriev, I. S. ; Zapletin, M. P.</creatorcontrib><description>The optimization problem is considered for the trajectory of a spacecraft mission to a group of asteroids. The ratio of the final spacecraft mass to the flight time is maximized. The spacecraft is controlled by changing the value and direction of the jet engine thrust (small thrust). The motion of the Earth, asteroids, and the spacecraft proceeds in the central Newtonian gravitational field of the Sun. The Earth and asteroids are considered as point objects moving in preset elliptical orbits. The spacecraft departure from the Earth is considered in the context of the method of a point-like sphere of action, and the excess of hyperbolic velocity is limited. It is required sequentially to have a rendezvous with asteroids from four various groups, one from each group; it is necessary to be on the first three asteroids for no less than 90 days. The trajectory is finished by arrival at the last asteroid. Constraints on the time of departure from the Earth, flight duration, and final mass are taken into account in this problem.</description><identifier>ISSN: 0010-9525</identifier><identifier>EISSN: 1608-3075</identifier><identifier>DOI: 10.1134/S0010952509050128</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Asteroids ; Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Physics ; Physics and Astronomy ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Cosmic research, 2009-10, Vol.47 (5), p.426-437</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-821883ae87012e9d281163c8a367e83ebdc9f877f0cad4ec30f6ce9fa046a0fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010952509050128$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010952509050128$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Grigoriev, I. S.</creatorcontrib><creatorcontrib>Zapletin, M. P.</creatorcontrib><title>One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids</title><title>Cosmic research</title><addtitle>Cosmic Res</addtitle><description>The optimization problem is considered for the trajectory of a spacecraft mission to a group of asteroids. The ratio of the final spacecraft mass to the flight time is maximized. The spacecraft is controlled by changing the value and direction of the jet engine thrust (small thrust). The motion of the Earth, asteroids, and the spacecraft proceeds in the central Newtonian gravitational field of the Sun. The Earth and asteroids are considered as point objects moving in preset elliptical orbits. The spacecraft departure from the Earth is considered in the context of the method of a point-like sphere of action, and the excess of hyperbolic velocity is limited. It is required sequentially to have a rendezvous with asteroids from four various groups, one from each group; it is necessary to be on the first three asteroids for no less than 90 days. The trajectory is finished by arrival at the last asteroid. Constraints on the time of departure from the Earth, flight duration, and final mass are taken into account in this problem.</description><subject>Asteroids</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0010-9525</issn><issn>1608-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAUxIMouK5-AG_Bi6fqS9M2yVEW_8HCHtRzyaYvS5duU5NUcD-9KSsIiqd3mN8M84aQSwY3jPHi9gWAgSrzEhSUwHJ5RGasAplxEOUxmU1yNumn5CyELQAowasZWa96pG6I7a7d69i6ng7erTvcUes8jV5v0UTnWwzUWRoGbdB4bSP12De4_3BjoLs2hMkZHdV04904TKwOEb1rm3BOTqzuAl583zl5e7h_XTxly9Xj8-JumRleiJjJnEnJNUqR6qNqcslYxY3UvBIoOa4bo6wUwoLRTYGGg60MKquhqDRYzefk-pCbPngfMcQ6FTPYdbrHVLNWINIAwFkir36RWzf6PpWrpVCVLABEgtgBMt6F4NHWg2932n_WDOpp8_rP5smTHzwhsf0G_U_w_6YvfNGEUw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Grigoriev, I. S.</creator><creator>Zapletin, M. P.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>200910</creationdate><title>One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids</title><author>Grigoriev, I. S. ; Zapletin, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-821883ae87012e9d281163c8a367e83ebdc9f877f0cad4ec30f6ce9fa046a0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asteroids</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoriev, I. S.</creatorcontrib><creatorcontrib>Zapletin, M. P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cosmic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoriev, I. S.</au><au>Zapletin, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids</atitle><jtitle>Cosmic research</jtitle><stitle>Cosmic Res</stitle><date>2009-10</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>426</spage><epage>437</epage><pages>426-437</pages><issn>0010-9525</issn><eissn>1608-3075</eissn><abstract>The optimization problem is considered for the trajectory of a spacecraft mission to a group of asteroids. The ratio of the final spacecraft mass to the flight time is maximized. The spacecraft is controlled by changing the value and direction of the jet engine thrust (small thrust). The motion of the Earth, asteroids, and the spacecraft proceeds in the central Newtonian gravitational field of the Sun. The Earth and asteroids are considered as point objects moving in preset elliptical orbits. The spacecraft departure from the Earth is considered in the context of the method of a point-like sphere of action, and the excess of hyperbolic velocity is limited. It is required sequentially to have a rendezvous with asteroids from four various groups, one from each group; it is necessary to be on the first three asteroids for no less than 90 days. The trajectory is finished by arrival at the last asteroid. Constraints on the time of departure from the Earth, flight duration, and final mass are taken into account in this problem.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0010952509050128</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-9525 |
ispartof | Cosmic research, 2009-10, Vol.47 (5), p.426-437 |
issn | 0010-9525 1608-3075 |
language | eng |
recordid | cdi_proquest_miscellaneous_907952031 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asteroids Astronomy Astrophysics and Astroparticles Astrophysics and Cosmology Physics Physics and Astronomy Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | One optimization problem for trajectories of spacecraft rendezvous mission to a group of asteroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20optimization%20problem%20for%20trajectories%20of%20spacecraft%20rendezvous%20mission%20to%20a%20group%20of%20asteroids&rft.jtitle=Cosmic%20research&rft.au=Grigoriev,%20I.%20S.&rft.date=2009-10&rft.volume=47&rft.issue=5&rft.spage=426&rft.epage=437&rft.pages=426-437&rft.issn=0010-9525&rft.eissn=1608-3075&rft_id=info:doi/10.1134/S0010952509050128&rft_dat=%3Cproquest_cross%3E2410113851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879684007&rft_id=info:pmid/&rfr_iscdi=true |