Identification of positive real models in subspace identification by using regularization
In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2003-10, Vol.48 (10), p.1843-1847 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1847 |
---|---|
container_issue | 10 |
container_start_page | 1843 |
container_title | IEEE transactions on automatic control |
container_volume | 48 |
creator | Goethals, I. Van Gestel, T. Suykens, J. Van Dooren, P. De Moor, B. |
description | In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix. |
doi_str_mv | 10.1109/TAC.2003.817940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907951055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1235394</ieee_id><sourcerecordid>28859257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKtnD14WQT1tm2SSbHIsxY-C4KUePIU0nZXIdrcmu0L9691aQfQgnoaZ_N4bMo-QU0ZHjFEznk-mI04pjDQrjKB7ZMCk1DmXHPbJgFKmc8O1OiRHKb30rRKCDcjTbIl1G8rgXRuaOmvKbN2k0IY3zCK6Kls1S6xSFuosdYu0dh6z8FOy2GRdCvVzzz93lYvh_XN-TA5KVyU8-apD8nhzPZ_e5fcPt7Pp5D73olBtvpDeGaBGaKGMkswhQ0C61FIhBy-0FAjGaVWWQlHuAJkrxRKZVAW4BYUhudr5rmPz2mFq7Sokj1Xlamy6ZA0tjGRUyp68_JPkWkvDZfEPkCsQwHrw_Bf40nSx7r9rtRasvz3buo13kI9NShFLu45h5eLGMmq30dk-OruNzu6i6xUXX7YueVeV0dU-pG-ZBADBt-vPdlxAxO9nDhKMgA9ggKEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884125217</pqid></control><display><type>article</type><title>Identification of positive real models in subspace identification by using regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</creator><creatorcontrib>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</creatorcontrib><description>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.817940</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Collaborative work ; Computer science; control theory; systems ; Control theory. Systems ; Cost function ; Councils ; Covariance matrix ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Least squares approximation ; Least squares method ; Least squares methods ; Mathematical analysis ; Matrices ; Miscellaneous ; Modelling and identification ; Regularization ; State estimation ; Stochastic processes ; Stochastic systems ; Subspaces ; Time domain analysis</subject><ispartof>IEEE transactions on automatic control, 2003-10, Vol.48 (10), p.1843-1847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</citedby><cites>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1235394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1235394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15333421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goethals, I.</creatorcontrib><creatorcontrib>Van Gestel, T.</creatorcontrib><creatorcontrib>Suykens, J.</creatorcontrib><creatorcontrib>Van Dooren, P.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><title>Identification of positive real models in subspace identification by using regularization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Collaborative work</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Councils</subject><subject>Covariance matrix</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Least squares approximation</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Miscellaneous</subject><subject>Modelling and identification</subject><subject>Regularization</subject><subject>State estimation</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Subspaces</subject><subject>Time domain analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1LAzEQxYMoWKtnD14WQT1tm2SSbHIsxY-C4KUePIU0nZXIdrcmu0L9691aQfQgnoaZ_N4bMo-QU0ZHjFEznk-mI04pjDQrjKB7ZMCk1DmXHPbJgFKmc8O1OiRHKb30rRKCDcjTbIl1G8rgXRuaOmvKbN2k0IY3zCK6Kls1S6xSFuosdYu0dh6z8FOy2GRdCvVzzz93lYvh_XN-TA5KVyU8-apD8nhzPZ_e5fcPt7Pp5D73olBtvpDeGaBGaKGMkswhQ0C61FIhBy-0FAjGaVWWQlHuAJkrxRKZVAW4BYUhudr5rmPz2mFq7Sokj1Xlamy6ZA0tjGRUyp68_JPkWkvDZfEPkCsQwHrw_Bf40nSx7r9rtRasvz3buo13kI9NShFLu45h5eLGMmq30dk-OruNzu6i6xUXX7YueVeV0dU-pG-ZBADBt-vPdlxAxO9nDhKMgA9ggKEI</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Goethals, I.</creator><creator>Van Gestel, T.</creator><creator>Suykens, J.</creator><creator>Van Dooren, P.</creator><creator>De Moor, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20031001</creationdate><title>Identification of positive real models in subspace identification by using regularization</title><author>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Collaborative work</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Councils</topic><topic>Covariance matrix</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Least squares approximation</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Miscellaneous</topic><topic>Modelling and identification</topic><topic>Regularization</topic><topic>State estimation</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Subspaces</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goethals, I.</creatorcontrib><creatorcontrib>Van Gestel, T.</creatorcontrib><creatorcontrib>Suykens, J.</creatorcontrib><creatorcontrib>Van Dooren, P.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goethals, I.</au><au>Van Gestel, T.</au><au>Suykens, J.</au><au>Van Dooren, P.</au><au>De Moor, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of positive real models in subspace identification by using regularization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>48</volume><issue>10</issue><spage>1843</spage><epage>1847</epage><pages>1843-1847</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.817940</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2003-10, Vol.48 (10), p.1843-1847 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_907951055 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Collaborative work Computer science control theory systems Control theory. Systems Cost function Councils Covariance matrix Dynamical systems Dynamics Exact sciences and technology Least squares approximation Least squares method Least squares methods Mathematical analysis Matrices Miscellaneous Modelling and identification Regularization State estimation Stochastic processes Stochastic systems Subspaces Time domain analysis |
title | Identification of positive real models in subspace identification by using regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20positive%20real%20models%20in%20subspace%20identification%20by%20using%20regularization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Goethals,%20I.&rft.date=2003-10-01&rft.volume=48&rft.issue=10&rft.spage=1843&rft.epage=1847&rft.pages=1843-1847&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.817940&rft_dat=%3Cproquest_RIE%3E28859257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884125217&rft_id=info:pmid/&rft_ieee_id=1235394&rfr_iscdi=true |