Identification of positive real models in subspace identification by using regularization

In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2003-10, Vol.48 (10), p.1843-1847
Hauptverfasser: Goethals, I., Van Gestel, T., Suykens, J., Van Dooren, P., De Moor, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1847
container_issue 10
container_start_page 1843
container_title IEEE transactions on automatic control
container_volume 48
creator Goethals, I.
Van Gestel, T.
Suykens, J.
Van Dooren, P.
De Moor, B.
description In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.
doi_str_mv 10.1109/TAC.2003.817940
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907951055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1235394</ieee_id><sourcerecordid>28859257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKtnD14WQT1tm2SSbHIsxY-C4KUePIU0nZXIdrcmu0L9691aQfQgnoaZ_N4bMo-QU0ZHjFEznk-mI04pjDQrjKB7ZMCk1DmXHPbJgFKmc8O1OiRHKb30rRKCDcjTbIl1G8rgXRuaOmvKbN2k0IY3zCK6Kls1S6xSFuosdYu0dh6z8FOy2GRdCvVzzz93lYvh_XN-TA5KVyU8-apD8nhzPZ_e5fcPt7Pp5D73olBtvpDeGaBGaKGMkswhQ0C61FIhBy-0FAjGaVWWQlHuAJkrxRKZVAW4BYUhudr5rmPz2mFq7Sokj1Xlamy6ZA0tjGRUyp68_JPkWkvDZfEPkCsQwHrw_Bf40nSx7r9rtRasvz3buo13kI9NShFLu45h5eLGMmq30dk-OruNzu6i6xUXX7YueVeV0dU-pG-ZBADBt-vPdlxAxO9nDhKMgA9ggKEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884125217</pqid></control><display><type>article</type><title>Identification of positive real models in subspace identification by using regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</creator><creatorcontrib>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</creatorcontrib><description>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.817940</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Collaborative work ; Computer science; control theory; systems ; Control theory. Systems ; Cost function ; Councils ; Covariance matrix ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Least squares approximation ; Least squares method ; Least squares methods ; Mathematical analysis ; Matrices ; Miscellaneous ; Modelling and identification ; Regularization ; State estimation ; Stochastic processes ; Stochastic systems ; Subspaces ; Time domain analysis</subject><ispartof>IEEE transactions on automatic control, 2003-10, Vol.48 (10), p.1843-1847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</citedby><cites>FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1235394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1235394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15333421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goethals, I.</creatorcontrib><creatorcontrib>Van Gestel, T.</creatorcontrib><creatorcontrib>Suykens, J.</creatorcontrib><creatorcontrib>Van Dooren, P.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><title>Identification of positive real models in subspace identification by using regularization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Collaborative work</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Councils</subject><subject>Covariance matrix</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Least squares approximation</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Miscellaneous</subject><subject>Modelling and identification</subject><subject>Regularization</subject><subject>State estimation</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Subspaces</subject><subject>Time domain analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1LAzEQxYMoWKtnD14WQT1tm2SSbHIsxY-C4KUePIU0nZXIdrcmu0L9691aQfQgnoaZ_N4bMo-QU0ZHjFEznk-mI04pjDQrjKB7ZMCk1DmXHPbJgFKmc8O1OiRHKb30rRKCDcjTbIl1G8rgXRuaOmvKbN2k0IY3zCK6Kls1S6xSFuosdYu0dh6z8FOy2GRdCvVzzz93lYvh_XN-TA5KVyU8-apD8nhzPZ_e5fcPt7Pp5D73olBtvpDeGaBGaKGMkswhQ0C61FIhBy-0FAjGaVWWQlHuAJkrxRKZVAW4BYUhudr5rmPz2mFq7Sokj1Xlamy6ZA0tjGRUyp68_JPkWkvDZfEPkCsQwHrw_Bf40nSx7r9rtRasvz3buo13kI9NShFLu45h5eLGMmq30dk-OruNzu6i6xUXX7YueVeV0dU-pG-ZBADBt-vPdlxAxO9nDhKMgA9ggKEI</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Goethals, I.</creator><creator>Van Gestel, T.</creator><creator>Suykens, J.</creator><creator>Van Dooren, P.</creator><creator>De Moor, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20031001</creationdate><title>Identification of positive real models in subspace identification by using regularization</title><author>Goethals, I. ; Van Gestel, T. ; Suykens, J. ; Van Dooren, P. ; De Moor, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-b5ca930948469651ae1e3e0d856e23c4854e39a86ff4602a3e1af4de15673ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Collaborative work</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Councils</topic><topic>Covariance matrix</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Least squares approximation</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Miscellaneous</topic><topic>Modelling and identification</topic><topic>Regularization</topic><topic>State estimation</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Subspaces</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goethals, I.</creatorcontrib><creatorcontrib>Van Gestel, T.</creatorcontrib><creatorcontrib>Suykens, J.</creatorcontrib><creatorcontrib>Van Dooren, P.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goethals, I.</au><au>Van Gestel, T.</au><au>Suykens, J.</au><au>Van Dooren, P.</au><au>De Moor, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of positive real models in subspace identification by using regularization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>48</volume><issue>10</issue><spage>1843</spage><epage>1847</epage><pages>1843-1847</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly estimated. However, for a finite amount of data, the obtained model may not be positive real, in which case the algorithm is not able to identify a valid stochastic model. In this note, positive realness is imposed by adding a regularization term to a least squares cost function in the subspace identification algorithm. The regularization term is the trace of a matrix which involves the dynamic system matrix and the output matrix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.817940</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2003-10, Vol.48 (10), p.1843-1847
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_907951055
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Collaborative work
Computer science
control theory
systems
Control theory. Systems
Cost function
Councils
Covariance matrix
Dynamical systems
Dynamics
Exact sciences and technology
Least squares approximation
Least squares method
Least squares methods
Mathematical analysis
Matrices
Miscellaneous
Modelling and identification
Regularization
State estimation
Stochastic processes
Stochastic systems
Subspaces
Time domain analysis
title Identification of positive real models in subspace identification by using regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20positive%20real%20models%20in%20subspace%20identification%20by%20using%20regularization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Goethals,%20I.&rft.date=2003-10-01&rft.volume=48&rft.issue=10&rft.spage=1843&rft.epage=1847&rft.pages=1843-1847&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.817940&rft_dat=%3Cproquest_RIE%3E28859257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884125217&rft_id=info:pmid/&rft_ieee_id=1235394&rfr_iscdi=true