Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation

A simplified model to assess the energy performance of vapor compression ‘on–off’ controlled refrigerators is presented herein. The model consists of first-principles algebraic equations adjusted with experimental information obtained from the refrigeration system under study. The experimental work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2009-08, Vol.86 (7), p.1311-1319
Hauptverfasser: Hermes, Christian J.L., Melo, Cláudio, Knabben, Fernando T., Gonçalves, Joaquim M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 7
container_start_page 1311
container_title Applied energy
container_volume 86
creator Hermes, Christian J.L.
Melo, Cláudio
Knabben, Fernando T.
Gonçalves, Joaquim M.
description A simplified model to assess the energy performance of vapor compression ‘on–off’ controlled refrigerators is presented herein. The model consists of first-principles algebraic equations adjusted with experimental information obtained from the refrigeration system under study. The experimental work consisted of controlling and measuring the system and component operating conditions in order to gather key information for the development and validation of the model. The methodology showed similar accuracy to that using more sophisticated dynamic simulation codes, but with lower computational costs. When compared to experimental data, the model predicted AHAM energy consumption tests within a ±5% deviation band. A sensitivity analysis considering the number of tube rows in the condenser coil, the number of fins in the evaporator coil and the compressor stroke is also reported. The refrigeration system under study was a top-mount ‘Combi’ 600-l refrigerator, ‘on–off’ controlled by the temperature of the fresh-food compartment.
doi_str_mv 10.1016/j.apenergy.2008.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907950606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261908002572</els_id><sourcerecordid>1671259118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-bbf84e47ca06d1636d1937726db027a0f26f96dc8eb92770aa2e501b7df5ccb63</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRCVWFr-AsoFwSXL2Nm1kxuoKh9SRTnA2ZrYk8arfGF7V9r-eiZK2yPImjfy-M3TeF6WvRWwFSDUx8MWZxop3J-3EqDi4pbTi2wjKi2LWojqZbaBElQhlahfZa9jPACAFBI2WfczkPM2-WnMpzZPHeWrVm6nMR6H-emlm46Ruql3eaA2-HsKmKYQcxxd3gaiB-LLyWMeE6E7FzFhojz64djjonGVXbTYR3rzmC-z319ufl1_K27vvn6__nxb2J2uUtE0bbWjnbYIyglVMtSl1lK5BqRGaKVqa-VsRU0ttQZESXsQjXbt3tpGlZfZ-1V3DtOfI8VkBh8t9T2OxF8wNeh6DwoW5od_MoXSQu6X_TFVrVQbphh5AWYOfsBwNgLMYoI5mCcTzGLCUufEjT_WxkAz2ecuIsJ54ZuTKbFSDGcO7qw5eQ5tKsaZQ5RCGIbadGlgwXePQ2O02LcBR-vjs7BkIvBh3qeVR7zrk6dgovU0WjY7kE3GTf5_s_8FoJ688w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671259118</pqid></control><display><type>article</type><title>Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hermes, Christian J.L. ; Melo, Cláudio ; Knabben, Fernando T. ; Gonçalves, Joaquim M.</creator><creatorcontrib>Hermes, Christian J.L. ; Melo, Cláudio ; Knabben, Fernando T. ; Gonçalves, Joaquim M.</creatorcontrib><description>A simplified model to assess the energy performance of vapor compression ‘on–off’ controlled refrigerators is presented herein. The model consists of first-principles algebraic equations adjusted with experimental information obtained from the refrigeration system under study. The experimental work consisted of controlling and measuring the system and component operating conditions in order to gather key information for the development and validation of the model. The methodology showed similar accuracy to that using more sophisticated dynamic simulation codes, but with lower computational costs. When compared to experimental data, the model predicted AHAM energy consumption tests within a ±5% deviation band. A sensitivity analysis considering the number of tube rows in the condenser coil, the number of fins in the evaporator coil and the compressor stroke is also reported. The refrigeration system under study was a top-mount ‘Combi’ 600-l refrigerator, ‘on–off’ controlled by the temperature of the fresh-food compartment.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2008.10.008</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Coiling ; Computer simulation ; Domestic refrigerators ; Domestic refrigerators Energy consumption Numerical simulation Experimental validation Sensitivity analysis ; Dynamical systems ; Dynamics ; Economic data ; Electric energy ; Energy ; Energy consumption ; Energy economics ; Energy. Thermal use of fuels ; Exact sciences and technology ; Experimental validation ; General, economic and professional studies ; Mathematical models ; Numerical simulation ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Refrigeration ; Refrigerators ; Sensitivity analysis ; Techniques. Materials</subject><ispartof>Applied energy, 2009-08, Vol.86 (7), p.1311-1319</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-bbf84e47ca06d1636d1937726db027a0f26f96dc8eb92770aa2e501b7df5ccb63</citedby><cites>FETCH-LOGICAL-c478t-bbf84e47ca06d1636d1937726db027a0f26f96dc8eb92770aa2e501b7df5ccb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2008.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21310101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a86_3ay_3a2009_3ai_3a7-8_3ap_3a1311-1319.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hermes, Christian J.L.</creatorcontrib><creatorcontrib>Melo, Cláudio</creatorcontrib><creatorcontrib>Knabben, Fernando T.</creatorcontrib><creatorcontrib>Gonçalves, Joaquim M.</creatorcontrib><title>Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation</title><title>Applied energy</title><description>A simplified model to assess the energy performance of vapor compression ‘on–off’ controlled refrigerators is presented herein. The model consists of first-principles algebraic equations adjusted with experimental information obtained from the refrigeration system under study. The experimental work consisted of controlling and measuring the system and component operating conditions in order to gather key information for the development and validation of the model. The methodology showed similar accuracy to that using more sophisticated dynamic simulation codes, but with lower computational costs. When compared to experimental data, the model predicted AHAM energy consumption tests within a ±5% deviation band. A sensitivity analysis considering the number of tube rows in the condenser coil, the number of fins in the evaporator coil and the compressor stroke is also reported. The refrigeration system under study was a top-mount ‘Combi’ 600-l refrigerator, ‘on–off’ controlled by the temperature of the fresh-food compartment.</description><subject>Applied sciences</subject><subject>Coiling</subject><subject>Computer simulation</subject><subject>Domestic refrigerators</subject><subject>Domestic refrigerators Energy consumption Numerical simulation Experimental validation Sensitivity analysis</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy economics</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Experimental validation</subject><subject>General, economic and professional studies</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Refrigeration</subject><subject>Refrigerators</subject><subject>Sensitivity analysis</subject><subject>Techniques. Materials</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1v1DAQjRCVWFr-AsoFwSXL2Nm1kxuoKh9SRTnA2ZrYk8arfGF7V9r-eiZK2yPImjfy-M3TeF6WvRWwFSDUx8MWZxop3J-3EqDi4pbTi2wjKi2LWojqZbaBElQhlahfZa9jPACAFBI2WfczkPM2-WnMpzZPHeWrVm6nMR6H-emlm46Ruql3eaA2-HsKmKYQcxxd3gaiB-LLyWMeE6E7FzFhojz64djjonGVXbTYR3rzmC-z319ufl1_K27vvn6__nxb2J2uUtE0bbWjnbYIyglVMtSl1lK5BqRGaKVqa-VsRU0ttQZESXsQjXbt3tpGlZfZ-1V3DtOfI8VkBh8t9T2OxF8wNeh6DwoW5od_MoXSQu6X_TFVrVQbphh5AWYOfsBwNgLMYoI5mCcTzGLCUufEjT_WxkAz2ecuIsJ54ZuTKbFSDGcO7qw5eQ5tKsaZQ5RCGIbadGlgwXePQ2O02LcBR-vjs7BkIvBh3qeVR7zrk6dgovU0WjY7kE3GTf5_s_8FoJ688w</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Hermes, Christian J.L.</creator><creator>Melo, Cláudio</creator><creator>Knabben, Fernando T.</creator><creator>Gonçalves, Joaquim M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20090801</creationdate><title>Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation</title><author>Hermes, Christian J.L. ; Melo, Cláudio ; Knabben, Fernando T. ; Gonçalves, Joaquim M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-bbf84e47ca06d1636d1937726db027a0f26f96dc8eb92770aa2e501b7df5ccb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Coiling</topic><topic>Computer simulation</topic><topic>Domestic refrigerators</topic><topic>Domestic refrigerators Energy consumption Numerical simulation Experimental validation Sensitivity analysis</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy economics</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Experimental validation</topic><topic>General, economic and professional studies</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Refrigeration</topic><topic>Refrigerators</topic><topic>Sensitivity analysis</topic><topic>Techniques. Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermes, Christian J.L.</creatorcontrib><creatorcontrib>Melo, Cláudio</creatorcontrib><creatorcontrib>Knabben, Fernando T.</creatorcontrib><creatorcontrib>Gonçalves, Joaquim M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermes, Christian J.L.</au><au>Melo, Cláudio</au><au>Knabben, Fernando T.</au><au>Gonçalves, Joaquim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation</atitle><jtitle>Applied energy</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>86</volume><issue>7</issue><spage>1311</spage><epage>1319</epage><pages>1311-1319</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>A simplified model to assess the energy performance of vapor compression ‘on–off’ controlled refrigerators is presented herein. The model consists of first-principles algebraic equations adjusted with experimental information obtained from the refrigeration system under study. The experimental work consisted of controlling and measuring the system and component operating conditions in order to gather key information for the development and validation of the model. The methodology showed similar accuracy to that using more sophisticated dynamic simulation codes, but with lower computational costs. When compared to experimental data, the model predicted AHAM energy consumption tests within a ±5% deviation band. A sensitivity analysis considering the number of tube rows in the condenser coil, the number of fins in the evaporator coil and the compressor stroke is also reported. The refrigeration system under study was a top-mount ‘Combi’ 600-l refrigerator, ‘on–off’ controlled by the temperature of the fresh-food compartment.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2008.10.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2009-08, Vol.86 (7), p.1311-1319
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_907950606
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Coiling
Computer simulation
Domestic refrigerators
Domestic refrigerators Energy consumption Numerical simulation Experimental validation Sensitivity analysis
Dynamical systems
Dynamics
Economic data
Electric energy
Energy
Energy consumption
Energy economics
Energy. Thermal use of fuels
Exact sciences and technology
Experimental validation
General, economic and professional studies
Mathematical models
Numerical simulation
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Refrigeration
Refrigerators
Sensitivity analysis
Techniques. Materials
title Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20energy%20consumption%20of%20household%20refrigerators%20and%20freezers%20via%20steady-state%20simulation&rft.jtitle=Applied%20energy&rft.au=Hermes,%20Christian%20J.L.&rft.date=2009-08-01&rft.volume=86&rft.issue=7&rft.spage=1311&rft.epage=1319&rft.pages=1311-1319&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2008.10.008&rft_dat=%3Cproquest_cross%3E1671259118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671259118&rft_id=info:pmid/&rft_els_id=S0306261908002572&rfr_iscdi=true