Gold Supported on Metal Oxides for Carbon Monoxide Oxidation

Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2011-02, Vol.4 (2), p.180-193
Hauptverfasser: Carabineiro, Sonia A. C., Bogdanchikova, Nina, Avalos-Borja, Miguel, Pestryakov, Alexey, Tavares, Pedro B., Figueiredo, Jose L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 180
container_title Nano research
container_volume 4
creator Carabineiro, Sonia A. C.
Bogdanchikova, Nina
Avalos-Borja, Miguel
Pestryakov, Alexey
Tavares, Pedro B.
Figueiredo, Jose L.
description Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.
doi_str_mv 10.1007/s12274-010-0068-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907947545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40762315</cqvip_id><sourcerecordid>1786176695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gCCyyBs-PYjsSCKihIRR2A2XISu6RK49ROJPj3OKSAxMBk-_y9d3cPoVMMVxiAX3tMCKcxYIgBmIj5HprgLBPhBbD_fceEHqIj79eBIZiKCbqZ27qMnvu2ta7TZWSb6El3qo6W71WpfWSsi2bK5UPdNnYofn2prrLNMTowqvb6ZHdO0ev93cvsIV4s54-z20VcUJp1scpVnjMt0iQziTHKqJzQBONSa2CJIiB4YqiBArTOC6N4ytOCcJLrpCRgRDJFF6Nv6-y2176Tm8oXuq5Vo23vZQY8ozylaSAv_yUxFwxzxrIBPf-Drm3vmrCHFFQIRjNGAoRHqHDWe6eNbF21Ue5DYpBD8HIMXobg5RC85EFDRo0PbLPS7tf4P9HZrtGbbVbboPvpRIGHSXCafALL2Y_S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848864962</pqid></control><display><type>article</type><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><source>SpringerNature Complete Journals</source><creator>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</creator><creatorcontrib>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</creatorcontrib><description>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-010-0068-7</identifier><language>eng</language><publisher>Heidelberg: Tsinghua Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Au纳米粒子 ; Biomedicine ; Biotechnology ; CARBON MONOXIDE ; Catalysis ; CATALYSTS ; Catalytic activity ; Chemistry and Materials Science ; Condensed Matter Physics ; COPPER OXIDE ; DEPOSITION ; Gold ; Materials Science ; Metal oxides ; Methods ; MICROSTRUCTURES ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; OXIDATION ; OXIDES ; PARTICLE SIZE AND SHAPE ; Research Article ; Spectrometry ; Temperature ; X RAYS ; X-ray diffraction ; X射线荧光光谱仪 ; 一氧化碳氧化 ; 程序升温还原 ; 选区电子衍射 ; 透射电子显微镜 ; 金属氧化物 ; 黄金</subject><ispartof>Nano research, 2011-02, Vol.4 (2), p.180-193</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</citedby><cites>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-010-0068-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-010-0068-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carabineiro, Sonia A. C.</creatorcontrib><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Avalos-Borja, Miguel</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Tavares, Pedro B.</creatorcontrib><creatorcontrib>Figueiredo, Jose L.</creatorcontrib><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Au纳米粒子</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>CARBON MONOXIDE</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>COPPER OXIDE</subject><subject>DEPOSITION</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Methods</subject><subject>MICROSTRUCTURES</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>OXIDATION</subject><subject>OXIDES</subject><subject>PARTICLE SIZE AND SHAPE</subject><subject>Research Article</subject><subject>Spectrometry</subject><subject>Temperature</subject><subject>X RAYS</subject><subject>X-ray diffraction</subject><subject>X射线荧光光谱仪</subject><subject>一氧化碳氧化</subject><subject>程序升温还原</subject><subject>选区电子衍射</subject><subject>透射电子显微镜</subject><subject>金属氧化物</subject><subject>黄金</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9gCCyyBs-PYjsSCKihIRR2A2XISu6RK49ROJPj3OKSAxMBk-_y9d3cPoVMMVxiAX3tMCKcxYIgBmIj5HprgLBPhBbD_fceEHqIj79eBIZiKCbqZ27qMnvu2ta7TZWSb6El3qo6W71WpfWSsi2bK5UPdNnYofn2prrLNMTowqvb6ZHdO0ev93cvsIV4s54-z20VcUJp1scpVnjMt0iQziTHKqJzQBONSa2CJIiB4YqiBArTOC6N4ytOCcJLrpCRgRDJFF6Nv6-y2176Tm8oXuq5Vo23vZQY8ozylaSAv_yUxFwxzxrIBPf-Drm3vmrCHFFQIRjNGAoRHqHDWe6eNbF21Ue5DYpBD8HIMXobg5RC85EFDRo0PbLPS7tf4P9HZrtGbbVbboPvpRIGHSXCafALL2Y_S</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Carabineiro, Sonia A. C.</creator><creator>Bogdanchikova, Nina</creator><creator>Avalos-Borja, Miguel</creator><creator>Pestryakov, Alexey</creator><creator>Tavares, Pedro B.</creator><creator>Figueiredo, Jose L.</creator><general>Tsinghua Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20110201</creationdate><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><author>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Au纳米粒子</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>CARBON MONOXIDE</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>COPPER OXIDE</topic><topic>DEPOSITION</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Methods</topic><topic>MICROSTRUCTURES</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>OXIDATION</topic><topic>OXIDES</topic><topic>PARTICLE SIZE AND SHAPE</topic><topic>Research Article</topic><topic>Spectrometry</topic><topic>Temperature</topic><topic>X RAYS</topic><topic>X-ray diffraction</topic><topic>X射线荧光光谱仪</topic><topic>一氧化碳氧化</topic><topic>程序升温还原</topic><topic>选区电子衍射</topic><topic>透射电子显微镜</topic><topic>金属氧化物</topic><topic>黄金</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carabineiro, Sonia A. C.</creatorcontrib><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Avalos-Borja, Miguel</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Tavares, Pedro B.</creatorcontrib><creatorcontrib>Figueiredo, Jose L.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carabineiro, Sonia A. C.</au><au>Bogdanchikova, Nina</au><au>Avalos-Borja, Miguel</au><au>Pestryakov, Alexey</au><au>Tavares, Pedro B.</au><au>Figueiredo, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>4</volume><issue>2</issue><spage>180</spage><epage>193</epage><pages>180-193</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</abstract><cop>Heidelberg</cop><pub>Tsinghua Press</pub><doi>10.1007/s12274-010-0068-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2011-02, Vol.4 (2), p.180-193
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_907947545
source SpringerNature Complete Journals
subjects Atomic/Molecular Structure and Spectra
Au纳米粒子
Biomedicine
Biotechnology
CARBON MONOXIDE
Catalysis
CATALYSTS
Catalytic activity
Chemistry and Materials Science
Condensed Matter Physics
COPPER OXIDE
DEPOSITION
Gold
Materials Science
Metal oxides
Methods
MICROSTRUCTURES
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
OXIDATION
OXIDES
PARTICLE SIZE AND SHAPE
Research Article
Spectrometry
Temperature
X RAYS
X-ray diffraction
X射线荧光光谱仪
一氧化碳氧化
程序升温还原
选区电子衍射
透射电子显微镜
金属氧化物
黄金
title Gold Supported on Metal Oxides for Carbon Monoxide Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Supported%20on%20Metal%20Oxides%20for%20Carbon%20Monoxide%20Oxidation&rft.jtitle=Nano%20research&rft.au=Carabineiro,%20Sonia%20A.%20C.&rft.date=2011-02-01&rft.volume=4&rft.issue=2&rft.spage=180&rft.epage=193&rft.pages=180-193&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-010-0068-7&rft_dat=%3Cproquest_cross%3E1786176695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848864962&rft_id=info:pmid/&rft_cqvip_id=40762315&rfr_iscdi=true