Gold Supported on Metal Oxides for Carbon Monoxide Oxidation
Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission ele...
Gespeichert in:
Veröffentlicht in: | Nano research 2011-02, Vol.4 (2), p.180-193 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 180 |
container_title | Nano research |
container_volume | 4 |
creator | Carabineiro, Sonia A. C. Bogdanchikova, Nina Avalos-Borja, Miguel Pestryakov, Alexey Tavares, Pedro B. Figueiredo, Jose L. |
description | Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation. |
doi_str_mv | 10.1007/s12274-010-0068-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907947545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40762315</cqvip_id><sourcerecordid>1786176695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gCCyyBs-PYjsSCKihIRR2A2XISu6RK49ROJPj3OKSAxMBk-_y9d3cPoVMMVxiAX3tMCKcxYIgBmIj5HprgLBPhBbD_fceEHqIj79eBIZiKCbqZ27qMnvu2ta7TZWSb6El3qo6W71WpfWSsi2bK5UPdNnYofn2prrLNMTowqvb6ZHdO0ev93cvsIV4s54-z20VcUJp1scpVnjMt0iQziTHKqJzQBONSa2CJIiB4YqiBArTOC6N4ytOCcJLrpCRgRDJFF6Nv6-y2176Tm8oXuq5Vo23vZQY8ozylaSAv_yUxFwxzxrIBPf-Drm3vmrCHFFQIRjNGAoRHqHDWe6eNbF21Ue5DYpBD8HIMXobg5RC85EFDRo0PbLPS7tf4P9HZrtGbbVbboPvpRIGHSXCafALL2Y_S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848864962</pqid></control><display><type>article</type><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><source>SpringerNature Complete Journals</source><creator>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</creator><creatorcontrib>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</creatorcontrib><description>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-010-0068-7</identifier><language>eng</language><publisher>Heidelberg: Tsinghua Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Au纳米粒子 ; Biomedicine ; Biotechnology ; CARBON MONOXIDE ; Catalysis ; CATALYSTS ; Catalytic activity ; Chemistry and Materials Science ; Condensed Matter Physics ; COPPER OXIDE ; DEPOSITION ; Gold ; Materials Science ; Metal oxides ; Methods ; MICROSTRUCTURES ; Nanomaterials ; Nanoparticles ; Nanostructure ; Nanotechnology ; OXIDATION ; OXIDES ; PARTICLE SIZE AND SHAPE ; Research Article ; Spectrometry ; Temperature ; X RAYS ; X-ray diffraction ; X射线荧光光谱仪 ; 一氧化碳氧化 ; 程序升温还原 ; 选区电子衍射 ; 透射电子显微镜 ; 金属氧化物 ; 黄金</subject><ispartof>Nano research, 2011-02, Vol.4 (2), p.180-193</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</citedby><cites>FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-010-0068-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-010-0068-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carabineiro, Sonia A. C.</creatorcontrib><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Avalos-Borja, Miguel</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Tavares, Pedro B.</creatorcontrib><creatorcontrib>Figueiredo, Jose L.</creatorcontrib><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Au纳米粒子</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>CARBON MONOXIDE</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Catalytic activity</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>COPPER OXIDE</subject><subject>DEPOSITION</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Methods</subject><subject>MICROSTRUCTURES</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>OXIDATION</subject><subject>OXIDES</subject><subject>PARTICLE SIZE AND SHAPE</subject><subject>Research Article</subject><subject>Spectrometry</subject><subject>Temperature</subject><subject>X RAYS</subject><subject>X-ray diffraction</subject><subject>X射线荧光光谱仪</subject><subject>一氧化碳氧化</subject><subject>程序升温还原</subject><subject>选区电子衍射</subject><subject>透射电子显微镜</subject><subject>金属氧化物</subject><subject>黄金</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9gCCyyBs-PYjsSCKihIRR2A2XISu6RK49ROJPj3OKSAxMBk-_y9d3cPoVMMVxiAX3tMCKcxYIgBmIj5HprgLBPhBbD_fceEHqIj79eBIZiKCbqZ27qMnvu2ta7TZWSb6El3qo6W71WpfWSsi2bK5UPdNnYofn2prrLNMTowqvb6ZHdO0ev93cvsIV4s54-z20VcUJp1scpVnjMt0iQziTHKqJzQBONSa2CJIiB4YqiBArTOC6N4ytOCcJLrpCRgRDJFF6Nv6-y2176Tm8oXuq5Vo23vZQY8ozylaSAv_yUxFwxzxrIBPf-Drm3vmrCHFFQIRjNGAoRHqHDWe6eNbF21Ue5DYpBD8HIMXobg5RC85EFDRo0PbLPS7tf4P9HZrtGbbVbboPvpRIGHSXCafALL2Y_S</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Carabineiro, Sonia A. C.</creator><creator>Bogdanchikova, Nina</creator><creator>Avalos-Borja, Miguel</creator><creator>Pestryakov, Alexey</creator><creator>Tavares, Pedro B.</creator><creator>Figueiredo, Jose L.</creator><general>Tsinghua Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20110201</creationdate><title>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</title><author>Carabineiro, Sonia A. C. ; Bogdanchikova, Nina ; Avalos-Borja, Miguel ; Pestryakov, Alexey ; Tavares, Pedro B. ; Figueiredo, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-ababb6e8539f3ffafab24311dee063a20873f4f0c0eebcfa7575c272be3d20f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Au纳米粒子</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>CARBON MONOXIDE</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Catalytic activity</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>COPPER OXIDE</topic><topic>DEPOSITION</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Methods</topic><topic>MICROSTRUCTURES</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>OXIDATION</topic><topic>OXIDES</topic><topic>PARTICLE SIZE AND SHAPE</topic><topic>Research Article</topic><topic>Spectrometry</topic><topic>Temperature</topic><topic>X RAYS</topic><topic>X-ray diffraction</topic><topic>X射线荧光光谱仪</topic><topic>一氧化碳氧化</topic><topic>程序升温还原</topic><topic>选区电子衍射</topic><topic>透射电子显微镜</topic><topic>金属氧化物</topic><topic>黄金</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carabineiro, Sonia A. C.</creatorcontrib><creatorcontrib>Bogdanchikova, Nina</creatorcontrib><creatorcontrib>Avalos-Borja, Miguel</creatorcontrib><creatorcontrib>Pestryakov, Alexey</creatorcontrib><creatorcontrib>Tavares, Pedro B.</creatorcontrib><creatorcontrib>Figueiredo, Jose L.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carabineiro, Sonia A. C.</au><au>Bogdanchikova, Nina</au><au>Avalos-Borja, Miguel</au><au>Pestryakov, Alexey</au><au>Tavares, Pedro B.</au><au>Figueiredo, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Supported on Metal Oxides for Carbon Monoxide Oxidation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>4</volume><issue>2</issue><spage>180</spage><epage>193</epage><pages>180-193</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.</abstract><cop>Heidelberg</cop><pub>Tsinghua Press</pub><doi>10.1007/s12274-010-0068-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2011-02, Vol.4 (2), p.180-193 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_miscellaneous_907947545 |
source | SpringerNature Complete Journals |
subjects | Atomic/Molecular Structure and Spectra Au纳米粒子 Biomedicine Biotechnology CARBON MONOXIDE Catalysis CATALYSTS Catalytic activity Chemistry and Materials Science Condensed Matter Physics COPPER OXIDE DEPOSITION Gold Materials Science Metal oxides Methods MICROSTRUCTURES Nanomaterials Nanoparticles Nanostructure Nanotechnology OXIDATION OXIDES PARTICLE SIZE AND SHAPE Research Article Spectrometry Temperature X RAYS X-ray diffraction X射线荧光光谱仪 一氧化碳氧化 程序升温还原 选区电子衍射 透射电子显微镜 金属氧化物 黄金 |
title | Gold Supported on Metal Oxides for Carbon Monoxide Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Supported%20on%20Metal%20Oxides%20for%20Carbon%20Monoxide%20Oxidation&rft.jtitle=Nano%20research&rft.au=Carabineiro,%20Sonia%20A.%20C.&rft.date=2011-02-01&rft.volume=4&rft.issue=2&rft.spage=180&rft.epage=193&rft.pages=180-193&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-010-0068-7&rft_dat=%3Cproquest_cross%3E1786176695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848864962&rft_id=info:pmid/&rft_cqvip_id=40762315&rfr_iscdi=true |