Short-Circuit Analysis of Permanent-Magnet Generators

Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2011-07, Vol.47 (4), p.1670-1680
Hauptverfasser: Klontz, K. W., Miller, T. J. E., McGilp, M. I., Karmaker, H., Zhong, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1680
container_issue 4
container_start_page 1670
container_title IEEE transactions on industry applications
container_volume 47
creator Klontz, K. W.
Miller, T. J. E.
McGilp, M. I.
Karmaker, H.
Zhong, P.
description Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.
doi_str_mv 10.1109/TIA.2011.2154370
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907940365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5766739</ieee_id><sourcerecordid>907940365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWKt3wcvixVPqJLPZbI5L0VqoKFjPId1mdct2U5Psof_elBYPwgzDwPeGN4-QWwYTxkA9LufVhANjE85EjhLOyIgpVFRhIc_JCEAhVUrll-QqhA0AywXLR0R8fDsf6bT19dDGrOpNtw9tyFyTvVu_Nb3tI301X72N2cz21pvofLgmF43pgr05zTH5fH5aTl_o4m02n1YLWiPnkZamQADLZdkYaVIXuDIq7WKViskVNiiYlKjMupR2vWZQJ0nOgJdcQI1j8nC8u_PuZ7Ah6m0batt1yZcbglYgVQ5YiETe_yM3bvDpm6BLWXIJUmCC4AjV3oXgbaN3vt0av9cM9CFFnVLUhxT1KcUkuTtKWmvtHy5kUSTX-AstU2u8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878270753</pqid></control><display><type>article</type><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><source>IEEE Electronic Library (IEL)</source><creator>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</creator><creatorcontrib>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</creatorcontrib><description>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2011.2154370</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Demagnetization ; Equations ; Faults ; Finite element method ; Generators ; Inductance ; interior PM machine ; magnet flux ; Magnetic flux ; Magnetization ; Mathematical analysis ; Mathematical model ; permanent-magnet generator ; rotor time constant ; Rotors ; screening function ; Short circuits ; short-circuit current ; Studies ; subtransient reactance ; surface-magnet motor ; synchronous generator ; Three dimensional ; three-phase fault ; Transient analysis ; Windings</subject><ispartof>IEEE transactions on industry applications, 2011-07, Vol.47 (4), p.1670-1680</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</citedby><cites>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5766739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5766739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klontz, K. W.</creatorcontrib><creatorcontrib>Miller, T. J. E.</creatorcontrib><creatorcontrib>McGilp, M. I.</creatorcontrib><creatorcontrib>Karmaker, H.</creatorcontrib><creatorcontrib>Zhong, P.</creatorcontrib><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</description><subject>Circuits</subject><subject>Demagnetization</subject><subject>Equations</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Generators</subject><subject>Inductance</subject><subject>interior PM machine</subject><subject>magnet flux</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>permanent-magnet generator</subject><subject>rotor time constant</subject><subject>Rotors</subject><subject>screening function</subject><subject>Short circuits</subject><subject>short-circuit current</subject><subject>Studies</subject><subject>subtransient reactance</subject><subject>surface-magnet motor</subject><subject>synchronous generator</subject><subject>Three dimensional</subject><subject>three-phase fault</subject><subject>Transient analysis</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQhYMoWKt3wcvixVPqJLPZbI5L0VqoKFjPId1mdct2U5Psof_elBYPwgzDwPeGN4-QWwYTxkA9LufVhANjE85EjhLOyIgpVFRhIc_JCEAhVUrll-QqhA0AywXLR0R8fDsf6bT19dDGrOpNtw9tyFyTvVu_Nb3tI301X72N2cz21pvofLgmF43pgr05zTH5fH5aTl_o4m02n1YLWiPnkZamQADLZdkYaVIXuDIq7WKViskVNiiYlKjMupR2vWZQJ0nOgJdcQI1j8nC8u_PuZ7Ah6m0batt1yZcbglYgVQ5YiETe_yM3bvDpm6BLWXIJUmCC4AjV3oXgbaN3vt0av9cM9CFFnVLUhxT1KcUkuTtKWmvtHy5kUSTX-AstU2u8</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Klontz, K. W.</creator><creator>Miller, T. J. E.</creator><creator>McGilp, M. I.</creator><creator>Karmaker, H.</creator><creator>Zhong, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201107</creationdate><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><author>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Circuits</topic><topic>Demagnetization</topic><topic>Equations</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Generators</topic><topic>Inductance</topic><topic>interior PM machine</topic><topic>magnet flux</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>permanent-magnet generator</topic><topic>rotor time constant</topic><topic>Rotors</topic><topic>screening function</topic><topic>Short circuits</topic><topic>short-circuit current</topic><topic>Studies</topic><topic>subtransient reactance</topic><topic>surface-magnet motor</topic><topic>synchronous generator</topic><topic>Three dimensional</topic><topic>three-phase fault</topic><topic>Transient analysis</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontz, K. W.</creatorcontrib><creatorcontrib>Miller, T. J. E.</creatorcontrib><creatorcontrib>McGilp, M. I.</creatorcontrib><creatorcontrib>Karmaker, H.</creatorcontrib><creatorcontrib>Zhong, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klontz, K. W.</au><au>Miller, T. J. E.</au><au>McGilp, M. I.</au><au>Karmaker, H.</au><au>Zhong, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Circuit Analysis of Permanent-Magnet Generators</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2011-07</date><risdate>2011</risdate><volume>47</volume><issue>4</issue><spage>1670</spage><epage>1680</epage><pages>1670-1680</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2011.2154370</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2011-07, Vol.47 (4), p.1670-1680
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_miscellaneous_907940365
source IEEE Electronic Library (IEL)
subjects Circuits
Demagnetization
Equations
Faults
Finite element method
Generators
Inductance
interior PM machine
magnet flux
Magnetic flux
Magnetization
Mathematical analysis
Mathematical model
permanent-magnet generator
rotor time constant
Rotors
screening function
Short circuits
short-circuit current
Studies
subtransient reactance
surface-magnet motor
synchronous generator
Three dimensional
three-phase fault
Transient analysis
Windings
title Short-Circuit Analysis of Permanent-Magnet Generators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Circuit%20Analysis%20of%20Permanent-Magnet%20Generators&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Klontz,%20K.%20W.&rft.date=2011-07&rft.volume=47&rft.issue=4&rft.spage=1670&rft.epage=1680&rft.pages=1670-1680&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2011.2154370&rft_dat=%3Cproquest_RIE%3E907940365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878270753&rft_id=info:pmid/&rft_ieee_id=5766739&rfr_iscdi=true