Short-Circuit Analysis of Permanent-Magnet Generators
Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2011-07, Vol.47 (4), p.1670-1680 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1680 |
---|---|
container_issue | 4 |
container_start_page | 1670 |
container_title | IEEE transactions on industry applications |
container_volume | 47 |
creator | Klontz, K. W. Miller, T. J. E. McGilp, M. I. Karmaker, H. Zhong, P. |
description | Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications. |
doi_str_mv | 10.1109/TIA.2011.2154370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907940365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5766739</ieee_id><sourcerecordid>907940365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWKt3wcvixVPqJLPZbI5L0VqoKFjPId1mdct2U5Psof_elBYPwgzDwPeGN4-QWwYTxkA9LufVhANjE85EjhLOyIgpVFRhIc_JCEAhVUrll-QqhA0AywXLR0R8fDsf6bT19dDGrOpNtw9tyFyTvVu_Nb3tI301X72N2cz21pvofLgmF43pgr05zTH5fH5aTl_o4m02n1YLWiPnkZamQADLZdkYaVIXuDIq7WKViskVNiiYlKjMupR2vWZQJ0nOgJdcQI1j8nC8u_PuZ7Ah6m0batt1yZcbglYgVQ5YiETe_yM3bvDpm6BLWXIJUmCC4AjV3oXgbaN3vt0av9cM9CFFnVLUhxT1KcUkuTtKWmvtHy5kUSTX-AstU2u8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878270753</pqid></control><display><type>article</type><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><source>IEEE Electronic Library (IEL)</source><creator>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</creator><creatorcontrib>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</creatorcontrib><description>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2011.2154370</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Demagnetization ; Equations ; Faults ; Finite element method ; Generators ; Inductance ; interior PM machine ; magnet flux ; Magnetic flux ; Magnetization ; Mathematical analysis ; Mathematical model ; permanent-magnet generator ; rotor time constant ; Rotors ; screening function ; Short circuits ; short-circuit current ; Studies ; subtransient reactance ; surface-magnet motor ; synchronous generator ; Three dimensional ; three-phase fault ; Transient analysis ; Windings</subject><ispartof>IEEE transactions on industry applications, 2011-07, Vol.47 (4), p.1670-1680</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</citedby><cites>FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5766739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5766739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klontz, K. W.</creatorcontrib><creatorcontrib>Miller, T. J. E.</creatorcontrib><creatorcontrib>McGilp, M. I.</creatorcontrib><creatorcontrib>Karmaker, H.</creatorcontrib><creatorcontrib>Zhong, P.</creatorcontrib><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</description><subject>Circuits</subject><subject>Demagnetization</subject><subject>Equations</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Generators</subject><subject>Inductance</subject><subject>interior PM machine</subject><subject>magnet flux</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>permanent-magnet generator</subject><subject>rotor time constant</subject><subject>Rotors</subject><subject>screening function</subject><subject>Short circuits</subject><subject>short-circuit current</subject><subject>Studies</subject><subject>subtransient reactance</subject><subject>surface-magnet motor</subject><subject>synchronous generator</subject><subject>Three dimensional</subject><subject>three-phase fault</subject><subject>Transient analysis</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQhYMoWKt3wcvixVPqJLPZbI5L0VqoKFjPId1mdct2U5Psof_elBYPwgzDwPeGN4-QWwYTxkA9LufVhANjE85EjhLOyIgpVFRhIc_JCEAhVUrll-QqhA0AywXLR0R8fDsf6bT19dDGrOpNtw9tyFyTvVu_Nb3tI301X72N2cz21pvofLgmF43pgr05zTH5fH5aTl_o4m02n1YLWiPnkZamQADLZdkYaVIXuDIq7WKViskVNiiYlKjMupR2vWZQJ0nOgJdcQI1j8nC8u_PuZ7Ah6m0batt1yZcbglYgVQ5YiETe_yM3bvDpm6BLWXIJUmCC4AjV3oXgbaN3vt0av9cM9CFFnVLUhxT1KcUkuTtKWmvtHy5kUSTX-AstU2u8</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Klontz, K. W.</creator><creator>Miller, T. J. E.</creator><creator>McGilp, M. I.</creator><creator>Karmaker, H.</creator><creator>Zhong, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201107</creationdate><title>Short-Circuit Analysis of Permanent-Magnet Generators</title><author>Klontz, K. W. ; Miller, T. J. E. ; McGilp, M. I. ; Karmaker, H. ; Zhong, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8a6300e278fa7afa763ba9e275b75b17b3f3517739ad87edd10ca6341028250c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Circuits</topic><topic>Demagnetization</topic><topic>Equations</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Generators</topic><topic>Inductance</topic><topic>interior PM machine</topic><topic>magnet flux</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>permanent-magnet generator</topic><topic>rotor time constant</topic><topic>Rotors</topic><topic>screening function</topic><topic>Short circuits</topic><topic>short-circuit current</topic><topic>Studies</topic><topic>subtransient reactance</topic><topic>surface-magnet motor</topic><topic>synchronous generator</topic><topic>Three dimensional</topic><topic>three-phase fault</topic><topic>Transient analysis</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontz, K. W.</creatorcontrib><creatorcontrib>Miller, T. J. E.</creatorcontrib><creatorcontrib>McGilp, M. I.</creatorcontrib><creatorcontrib>Karmaker, H.</creatorcontrib><creatorcontrib>Zhong, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klontz, K. W.</au><au>Miller, T. J. E.</au><au>McGilp, M. I.</au><au>Karmaker, H.</au><au>Zhong, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Circuit Analysis of Permanent-Magnet Generators</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2011-07</date><risdate>2011</risdate><volume>47</volume><issue>4</issue><spage>1670</spage><epage>1680</epage><pages>1670-1680</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Permanent-magnet generators (PMGs) have rapidly become important in renewable energy systems, portable and standby generating systems, and in many new applications in industrial, utility, aerospace, and automotive sectors. While there has been some discussion of "fault tolerance" and fault testing of an 8-MW machine has recently been reported [1], understanding the behavior of faulted PMGs remains far from complete. This paper addresses the important case of the sudden short circuit applied to large PMG machines. It explains key differences in short-circuit behavior between the PMG and wound-field generator. The subtransient reactances and time constants of the PMG are calculated by both analytical and finite-element methods and applied to the classical circuit-theory simulation of the short-circuit fault. The finite-element method is also used to assess in detail the risk of loss of magnetization in the magnets. The complexity of the transient magnetic field requires transient nonlinear circuit-coupled finite-element analysis in three dimensions with voltage-source excitation. This paper concludes with a review of the methods of calculation and a discussion of implications for future design and application of the PMG, including factors relevant to the application of standard tests and specifications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2011.2154370</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2011-07, Vol.47 (4), p.1670-1680 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_miscellaneous_907940365 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Demagnetization Equations Faults Finite element method Generators Inductance interior PM machine magnet flux Magnetic flux Magnetization Mathematical analysis Mathematical model permanent-magnet generator rotor time constant Rotors screening function Short circuits short-circuit current Studies subtransient reactance surface-magnet motor synchronous generator Three dimensional three-phase fault Transient analysis Windings |
title | Short-Circuit Analysis of Permanent-Magnet Generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Circuit%20Analysis%20of%20Permanent-Magnet%20Generators&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Klontz,%20K.%20W.&rft.date=2011-07&rft.volume=47&rft.issue=4&rft.spage=1670&rft.epage=1680&rft.pages=1670-1680&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2011.2154370&rft_dat=%3Cproquest_RIE%3E907940365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878270753&rft_id=info:pmid/&rft_ieee_id=5766739&rfr_iscdi=true |