A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition

This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi-Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2003-08, Vol.11 (4), p.528-541
Hauptverfasser: Xia Hong, Harris, C.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 4
container_start_page 528
container_title IEEE transactions on fuzzy systems
container_volume 11
creator Xia Hong
Harris, C.J.
description This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi-Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The paper introduces a one to one mapping between a fuzzy rule-base and a model matrix feature subspace. Hence, rule-based knowledge can be extracted to enhance model transparency. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level.
doi_str_mv 10.1109/TFUZZ.2003.814842
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907936240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1220298</ieee_id><sourcerecordid>907936240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a8a5220d6343cdc1831cb66f1ebc5ec3973ec18ef66f0e1be2d23e7179914ac3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsoqKsfQLwED3rqmn9tk-OyuCoIHlwvXkI2mWq1bdakZV0_vakVBA-eZubxmwczL0lOCJ4SguXlcvH49DSlGLOpIFxwupMcEMlJGhW-G3ucszQvcL6fHIbwijHhGREHSTtDLfTelf3n5za23cb5N_TWuk0N9hkQfHRem65yLdKtHUZoLVh07XWTPpiXprId0vWz81X30qDSedQ4CzUK_SqstQFkwbhm7UI1mBwle6WuAxz_1EmyXFwt5zfp3f317Xx2lxqWsS7VQmeUYpszzow1RDBiVnleEliZDAyTBYOoQhk1DGQF1FIGBSmkJFwbNkkuRtu1d-89hE41VTBQ17oF1wclcSFZTjmO5Pm_JBW84JnII3j2B3x1vW_jEUrS-HGRicGNjJDxLgQPpVr7qtF-qwhWQ07qOyc15KTGnOLO6bhTAcAvH8-nUrAvRoSRGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921488580</pqid></control><display><type>article</type><title>A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Xia Hong ; Harris, C.J.</creator><creatorcontrib>Xia Hong ; Harris, C.J.</creatorcontrib><description>This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi-Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The paper introduces a one to one mapping between a fuzzy rule-base and a model matrix feature subspace. Hence, rule-based knowledge can be extracted to enhance model transparency. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2003.814842</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Criteria ; Data mining ; Decomposition ; Design for experiments ; Dynamical systems ; Energy states ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Inference algorithms ; Inference mechanisms ; Mathematical analysis ; Matrix decomposition ; Parameter estimation ; Studies ; Subspaces ; Takagi-Sugeno model</subject><ispartof>IEEE transactions on fuzzy systems, 2003-08, Vol.11 (4), p.528-541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a8a5220d6343cdc1831cb66f1ebc5ec3973ec18ef66f0e1be2d23e7179914ac3</citedby><cites>FETCH-LOGICAL-c353t-a8a5220d6343cdc1831cb66f1ebc5ec3973ec18ef66f0e1be2d23e7179914ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1220298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1220298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia Hong</creatorcontrib><creatorcontrib>Harris, C.J.</creatorcontrib><title>A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi-Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The paper introduces a one to one mapping between a fuzzy rule-base and a model matrix feature subspace. Hence, rule-based knowledge can be extracted to enhance model transparency. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level.</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Data mining</subject><subject>Decomposition</subject><subject>Design for experiments</subject><subject>Dynamical systems</subject><subject>Energy states</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Inference algorithms</subject><subject>Inference mechanisms</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Parameter estimation</subject><subject>Studies</subject><subject>Subspaces</subject><subject>Takagi-Sugeno model</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU9LxDAQxYsoqKsfQLwED3rqmn9tk-OyuCoIHlwvXkI2mWq1bdakZV0_vakVBA-eZubxmwczL0lOCJ4SguXlcvH49DSlGLOpIFxwupMcEMlJGhW-G3ucszQvcL6fHIbwijHhGREHSTtDLfTelf3n5za23cb5N_TWuk0N9hkQfHRem65yLdKtHUZoLVh07XWTPpiXprId0vWz81X30qDSedQ4CzUK_SqstQFkwbhm7UI1mBwle6WuAxz_1EmyXFwt5zfp3f317Xx2lxqWsS7VQmeUYpszzow1RDBiVnleEliZDAyTBYOoQhk1DGQF1FIGBSmkJFwbNkkuRtu1d-89hE41VTBQ17oF1wclcSFZTjmO5Pm_JBW84JnII3j2B3x1vW_jEUrS-HGRicGNjJDxLgQPpVr7qtF-qwhWQ07qOyc15KTGnOLO6bhTAcAvH8-nUrAvRoSRGw</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Xia Hong</creator><creator>Harris, C.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030801</creationdate><title>A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition</title><author>Xia Hong ; Harris, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a8a5220d6343cdc1831cb66f1ebc5ec3973ec18ef66f0e1be2d23e7179914ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Data mining</topic><topic>Decomposition</topic><topic>Design for experiments</topic><topic>Dynamical systems</topic><topic>Energy states</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Inference algorithms</topic><topic>Inference mechanisms</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Parameter estimation</topic><topic>Studies</topic><topic>Subspaces</topic><topic>Takagi-Sugeno model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia Hong</creatorcontrib><creatorcontrib>Harris, C.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia Hong</au><au>Harris, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2003-08-01</date><risdate>2003</risdate><volume>11</volume><issue>4</issue><spage>528</spage><epage>541</epage><pages>528-541</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi-Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The paper introduces a one to one mapping between a fuzzy rule-base and a model matrix feature subspace. Hence, rule-based knowledge can be extracted to enhance model transparency. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2003.814842</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2003-08, Vol.11 (4), p.528-541
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_907936240
source IEEE Electronic Library (IEL)
subjects Algorithms
Criteria
Data mining
Decomposition
Design for experiments
Dynamical systems
Energy states
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Inference algorithms
Inference mechanisms
Mathematical analysis
Matrix decomposition
Parameter estimation
Studies
Subspaces
Takagi-Sugeno model
title A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neurofuzzy%20network%20knowledge%20extraction%20and%20extended%20Gram-Schmidt%20algorithm%20for%20model%20subspace%20decomposition&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Xia%20Hong&rft.date=2003-08-01&rft.volume=11&rft.issue=4&rft.spage=528&rft.epage=541&rft.pages=528-541&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2003.814842&rft_dat=%3Cproquest_RIE%3E907936240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921488580&rft_id=info:pmid/&rft_ieee_id=1220298&rfr_iscdi=true