Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory

Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2007-07, Vol.47 (7), p.1142-1157
Hauptverfasser: Agoshkov, V. I., Botvinovskii, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 7
container_start_page 1142
container_title Computational mathematics and mathematical physics
container_volume 47
creator Agoshkov, V. I.
Botvinovskii, E. A.
description Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.[PUBLICATION ABSTRACT]
doi_str_mv 10.1134/S096554250707007X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172749841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-9bf8309121d4d63195ac4bdd794af642e497125387c9e6abba10eec33cd6d463</originalsourceid><addsrcrecordid>eNplkT1PwzAQhi0EEqXwA9gsFqaAHX_VI6r4kioY2oHNcmxHTUns1naQ8u9JKBPohpPufd7TnV4ArjG6w5jQ-zWSnDFaMiTGQuLjBMwwY6zgnJenYDbJxaSfg4uUdghhLhdkBr7e-s7FxugWptD2uQkehhrmrYM--JT1NNFxgOscPl2CaUjZdbAaYOfyNtg00druQuNz4Q79Dz_Zw-jR3sKwz003bjfB5xjaX-kSnNW6Te7qt8_B5ulxs3wpVu_Pr8uHVWFKLHMhq3pBkMQlttRygiXThlbWCkl1zWnpqBS4ZGQhjHRcV5XGyDlDiLHcUk7m4Pa4dh_DoXcpq65JxrWt9i70SUkkJKFY0pG8-UPuQh_9eJsSTMqSSipGCB8hE0NK0dVqH8fn4qAwUlMM6l8M5BuymX0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759924947</pqid></control><display><type>article</type><title>Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Agoshkov, V. I. ; Botvinovskii, E. A.</creator><creatorcontrib>Agoshkov, V. I. ; Botvinovskii, E. A.</creatorcontrib><description>Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554250707007X</identifier><language>eng</language><publisher>Moscow: Springer Nature B.V</publisher><subject>Algorithms ; Control theory ; Convergence ; Design engineering ; Fluid flow ; Iterative algorithms ; Mathematical analysis ; Mathematical models ; Optimal control ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2007-07, Vol.47 (7), p.1142-1157</ispartof><rights>Nauka/Interperiodica 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-9bf8309121d4d63195ac4bdd794af642e497125387c9e6abba10eec33cd6d463</citedby><cites>FETCH-LOGICAL-c219t-9bf8309121d4d63195ac4bdd794af642e497125387c9e6abba10eec33cd6d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Agoshkov, V. I.</creatorcontrib><creatorcontrib>Botvinovskii, E. A.</creatorcontrib><title>Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory</title><title>Computational mathematics and mathematical physics</title><description>Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Fluid flow</subject><subject>Iterative algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkT1PwzAQhi0EEqXwA9gsFqaAHX_VI6r4kioY2oHNcmxHTUns1naQ8u9JKBPohpPufd7TnV4ArjG6w5jQ-zWSnDFaMiTGQuLjBMwwY6zgnJenYDbJxaSfg4uUdghhLhdkBr7e-s7FxugWptD2uQkehhrmrYM--JT1NNFxgOscPl2CaUjZdbAaYOfyNtg00druQuNz4Q79Dz_Zw-jR3sKwz003bjfB5xjaX-kSnNW6Te7qt8_B5ulxs3wpVu_Pr8uHVWFKLHMhq3pBkMQlttRygiXThlbWCkl1zWnpqBS4ZGQhjHRcV5XGyDlDiLHcUk7m4Pa4dh_DoXcpq65JxrWt9i70SUkkJKFY0pG8-UPuQh_9eJsSTMqSSipGCB8hE0NK0dVqH8fn4qAwUlMM6l8M5BuymX0M</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Agoshkov, V. I.</creator><creator>Botvinovskii, E. A.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070701</creationdate><title>Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory</title><author>Agoshkov, V. I. ; Botvinovskii, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-9bf8309121d4d63195ac4bdd794af642e497125387c9e6abba10eec33cd6d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Fluid flow</topic><topic>Iterative algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agoshkov, V. I.</creatorcontrib><creatorcontrib>Botvinovskii, E. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agoshkov, V. I.</au><au>Botvinovskii, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>47</volume><issue>7</issue><spage>1142</spage><epage>1157</epage><pages>1142-1157</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.[PUBLICATION ABSTRACT]</abstract><cop>Moscow</cop><pub>Springer Nature B.V</pub><doi>10.1134/S096554250707007X</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2007-07, Vol.47 (7), p.1142-1157
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_907934194
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Control theory
Convergence
Design engineering
Fluid flow
Iterative algorithms
Mathematical analysis
Mathematical models
Optimal control
Studies
title Numerical solution of the nonstationary Stokes system by methods of adjoint-equation theory and optimal control theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20nonstationary%20Stokes%20system%20by%20methods%20of%20adjoint-equation%20theory%20and%20optimal%20control%20theory&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Agoshkov,%20V.%20I.&rft.date=2007-07-01&rft.volume=47&rft.issue=7&rft.spage=1142&rft.epage=1157&rft.pages=1142-1157&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554250707007X&rft_dat=%3Cproquest_cross%3E2172749841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759924947&rft_id=info:pmid/&rfr_iscdi=true