Smoothed analysis of condition numbers and complexity implications for linear programming

We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2011-02, Vol.126 (2), p.315-350
Hauptverfasser: Dunagan, John, Spielman, Daniel A., Teng, Shang-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 2
container_start_page 315
container_title Mathematical programming
container_volume 126
creator Dunagan, John
Spielman, Daniel A.
Teng, Shang-Hua
description We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfying and every σ ≤ 1, where A , b and c are Gaussian perturbations of Ā, and of variance σ 2 and C ( A , b , c ) is the condition number of the linear program defined by ( A , b , c ). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O ( n 3 log( nd / σ )).
doi_str_mv 10.1007/s10107-009-0278-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907933669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907933669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-83e72df369d546d0f9c3300dfddeca787fcb5924f8070648965ba4c2084e11223</originalsourceid><addsrcrecordid>eNp1kEtrFEEQxxsx4Jr4AbwNgniaWP2Yfhwl-AgEPJgcPDW9_Vg7zHSvXbPgfnt72aAgeKqi6lf_qvoT8prCNQVQ75ECBTUCmBGY0uP0jGyo4HIUUsjnZAPApnGSFF6Ql4iPAEC51hvy_dtS6_ojhsEVNx8x41DT4GsJec21DOWwbGPD3g29uuzn-CuvxyH3LHt3QnBItQ1zLtG1Yd_qrrllyWV3RS6SmzG-eoqX5OHTx_ubL-Pd18-3Nx_uRs-VWkfNo2IhcWnCJGSAZDznACGFEL1TWiW_nQwTSYMCKbSR09YJz0CLSClj_JK8O-v23T8PEVe7ZPRxnl2J9YDWgDKcS2k6-eYf8rEeWn8breZUUsk0dIieId8qYovJ7lteXDtaCvZktT1bbbvV9mS1nfrM2ydhh97NqbniM_4ZZFwZoEx0jp057K2yi-3vAf8X_w2QI45-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831616280</pqid></control><display><type>article</type><title>Smoothed analysis of condition numbers and complexity implications for linear programming</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Dunagan, John ; Spielman, Daniel A. ; Teng, Shang-Hua</creator><creatorcontrib>Dunagan, John ; Spielman, Daniel A. ; Teng, Shang-Hua</creatorcontrib><description>We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfying and every σ ≤ 1, where A , b and c are Gaussian perturbations of Ā, and of variance σ 2 and C ( A , b , c ) is the condition number of the linear program defined by ( A , b , c ). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O ( n 3 log( nd / σ )).</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-009-0278-5</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Applied sciences ; C (programming language) ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Complexity ; Computer science ; Data smoothing ; Exact sciences and technology ; Full Length Paper ; Gaussian ; Linear programming ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Operational research and scientific management ; Operational research. Management science ; Perturbation methods ; Random variables ; Simplex method ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2011-02, Vol.126 (2), p.315-350</ispartof><rights>Springer and Mathematical Programming Society 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer and Mathematical Optimization Society 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-83e72df369d546d0f9c3300dfddeca787fcb5924f8070648965ba4c2084e11223</citedby><cites>FETCH-LOGICAL-c377t-83e72df369d546d0f9c3300dfddeca787fcb5924f8070648965ba4c2084e11223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-009-0278-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-009-0278-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23790124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunagan, John</creatorcontrib><creatorcontrib>Spielman, Daniel A.</creatorcontrib><creatorcontrib>Teng, Shang-Hua</creatorcontrib><title>Smoothed analysis of condition numbers and complexity implications for linear programming</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfying and every σ ≤ 1, where A , b and c are Gaussian perturbations of Ā, and of variance σ 2 and C ( A , b , c ) is the condition number of the linear program defined by ( A , b , c ). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O ( n 3 log( nd / σ )).</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>C (programming language)</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Complexity</subject><subject>Computer science</subject><subject>Data smoothing</subject><subject>Exact sciences and technology</subject><subject>Full Length Paper</subject><subject>Gaussian</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Perturbation methods</subject><subject>Random variables</subject><subject>Simplex method</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtrFEEQxxsx4Jr4AbwNgniaWP2Yfhwl-AgEPJgcPDW9_Vg7zHSvXbPgfnt72aAgeKqi6lf_qvoT8prCNQVQ75ECBTUCmBGY0uP0jGyo4HIUUsjnZAPApnGSFF6Ql4iPAEC51hvy_dtS6_ojhsEVNx8x41DT4GsJec21DOWwbGPD3g29uuzn-CuvxyH3LHt3QnBItQ1zLtG1Yd_qrrllyWV3RS6SmzG-eoqX5OHTx_ubL-Pd18-3Nx_uRs-VWkfNo2IhcWnCJGSAZDznACGFEL1TWiW_nQwTSYMCKbSR09YJz0CLSClj_JK8O-v23T8PEVe7ZPRxnl2J9YDWgDKcS2k6-eYf8rEeWn8breZUUsk0dIieId8qYovJ7lteXDtaCvZktT1bbbvV9mS1nfrM2ydhh97NqbniM_4ZZFwZoEx0jp057K2yi-3vAf8X_w2QI45-</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Dunagan, John</creator><creator>Spielman, Daniel A.</creator><creator>Teng, Shang-Hua</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110201</creationdate><title>Smoothed analysis of condition numbers and complexity implications for linear programming</title><author>Dunagan, John ; Spielman, Daniel A. ; Teng, Shang-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-83e72df369d546d0f9c3300dfddeca787fcb5924f8070648965ba4c2084e11223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>C (programming language)</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Complexity</topic><topic>Computer science</topic><topic>Data smoothing</topic><topic>Exact sciences and technology</topic><topic>Full Length Paper</topic><topic>Gaussian</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Perturbation methods</topic><topic>Random variables</topic><topic>Simplex method</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunagan, John</creatorcontrib><creatorcontrib>Spielman, Daniel A.</creatorcontrib><creatorcontrib>Teng, Shang-Hua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunagan, John</au><au>Spielman, Daniel A.</au><au>Teng, Shang-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothed analysis of condition numbers and complexity implications for linear programming</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>126</volume><issue>2</issue><spage>315</spage><epage>350</epage><pages>315-350</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfying and every σ ≤ 1, where A , b and c are Gaussian perturbations of Ā, and of variance σ 2 and C ( A , b , c ) is the condition number of the linear program defined by ( A , b , c ). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O ( n 3 log( nd / σ )).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-009-0278-5</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2011-02, Vol.126 (2), p.315-350
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_907933669
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Applied sciences
C (programming language)
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Complexity
Computer science
Data smoothing
Exact sciences and technology
Full Length Paper
Gaussian
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Perturbation methods
Random variables
Simplex method
Studies
Theoretical
title Smoothed analysis of condition numbers and complexity implications for linear programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothed%20analysis%20of%20condition%20numbers%20and%20complexity%20implications%20for%20linear%20programming&rft.jtitle=Mathematical%20programming&rft.au=Dunagan,%20John&rft.date=2011-02-01&rft.volume=126&rft.issue=2&rft.spage=315&rft.epage=350&rft.pages=315-350&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-009-0278-5&rft_dat=%3Cproquest_cross%3E907933669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831616280&rft_id=info:pmid/&rfr_iscdi=true