Smoothed analysis of condition numbers and complexity implications for linear programming

We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2011-02, Vol.126 (2), p.315-350
Hauptverfasser: Dunagan, John, Spielman, Daniel A., Teng, Shang-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n -by- d matrix Ā, n -vector , and d -vector satisfying and every σ ≤ 1, where A , b and c are Gaussian perturbations of Ā, and of variance σ 2 and C ( A , b , c ) is the condition number of the linear program defined by ( A , b , c ). From this bound, we obtain a smoothed analysis of interior point algorithms. By combining this with the smoothed analysis of finite termination of Spielman and Teng (Math. Prog. Ser. B, 2003), we show that the smoothed complexity of interior point algorithms for linear programming is O ( n 3 log( nd / σ )).
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-009-0278-5