Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock

Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2011-02, Vol.331 (6020), p.1043-1046
Hauptverfasser: Swallows, Matthew D, Bishof, Michael, Lin, Yige, Blatt, Sebastian, Martin, Michael J, Rey, Ana Maria, Ye, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 6020
container_start_page 1043
container_title Science (American Association for the Advancement of Science)
container_volume 331
creator Swallows, Matthew D
Bishof, Michael
Lin, Yige
Blatt, Sebastian
Martin, Michael J
Rey, Ana Maria
Ye, Jun
description Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10⁻¹⁷. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.
doi_str_mv 10.1126/science.1196442
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907933417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41075754</jstor_id><sourcerecordid>41075754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-829f278b4f7c92217e10abae3071c0875a4d5bcb46e64bc626c9664795ec0683</originalsourceid><addsrcrecordid>eNqFkb9vEzEYhi1ERUPLzARYSKjT0c-_zyOKgEaKxJB2PvlcX-rgnIPtG_rf4zbXIrF0sj69j5_hfRF6T-ArIVReZuvdaF09tOScvkILAlo0mgJ7jRYATDYtKHGK3ua8A6iZZm_QKSVUU81hgVab6XBILmcfRxwHvIwh-IfDBLy580PJ2I_Y4E1JcdyGe7wai0vGFj9u8dqU4q3DyxDt73N0MpiQ3bv5PUPXP75fL6-a9a-fq-W3dWMFa0vTUj1Q1fZ8UFZTSpQjYHrjGChioVXC8FvR255LJ3lvJZVWS8mVFs6CbNkZujhqDyn-mVwu3d5n60Iwo4tT7jQozRgn6kWyFUxXtaCV_PwfuYtTqhU8QqoWS0SFLo-QTTHn5IbukPzepPuOQPcwRjeP0c1j1B8fZ-3U793tM__UfgW-zIDJ1oQhmdH6_I9jmhDyKPpw5Ha5xPScc1KnVYLX_NMxH0zszDZVx82GAmFANJdCc_YXekakQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853744215</pqid></control><display><type>article</type><title>Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock</title><source>JSTOR</source><source>Science Online科学在线</source><creator>Swallows, Matthew D ; Bishof, Michael ; Lin, Yige ; Blatt, Sebastian ; Martin, Michael J ; Rey, Ana Maria ; Ye, Jun</creator><creatorcontrib>Swallows, Matthew D ; Bishof, Michael ; Lin, Yige ; Blatt, Sebastian ; Martin, Michael J ; Rey, Ana Maria ; Ye, Jun</creatorcontrib><description>Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10⁻¹⁷. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1196442</identifier><identifier>PMID: 21292940</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atomic clocks ; Atomic interactions ; Atoms ; Atoms &amp; subatomic particles ; Clocks ; Density ; Exact sciences and technology ; Extreme values ; Frequency shift ; Laser beams ; Lasers ; Lattice theory ; Lattices ; Mathematical lattices ; Measurements common to several branches of physics and astronomy ; Metrology, measurements and laboratory procedures ; Optical lattices ; Particle interactions ; Particles ; Physics ; Singlet state ; Strong nuclear force ; Strontium ; Time and frequency</subject><ispartof>Science (American Association for the Advancement of Science), 2011-02, Vol.331 (6020), p.1043-1046</ispartof><rights>Copyright © 2011 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-829f278b4f7c92217e10abae3071c0875a4d5bcb46e64bc626c9664795ec0683</citedby><cites>FETCH-LOGICAL-c538t-829f278b4f7c92217e10abae3071c0875a4d5bcb46e64bc626c9664795ec0683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41075754$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41075754$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23911142$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21292940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swallows, Matthew D</creatorcontrib><creatorcontrib>Bishof, Michael</creatorcontrib><creatorcontrib>Lin, Yige</creatorcontrib><creatorcontrib>Blatt, Sebastian</creatorcontrib><creatorcontrib>Martin, Michael J</creatorcontrib><creatorcontrib>Rey, Ana Maria</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><title>Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10⁻¹⁷. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.</description><subject>Atomic clocks</subject><subject>Atomic interactions</subject><subject>Atoms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Clocks</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Extreme values</subject><subject>Frequency shift</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematical lattices</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Optical lattices</subject><subject>Particle interactions</subject><subject>Particles</subject><subject>Physics</subject><subject>Singlet state</subject><subject>Strong nuclear force</subject><subject>Strontium</subject><subject>Time and frequency</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkb9vEzEYhi1ERUPLzARYSKjT0c-_zyOKgEaKxJB2PvlcX-rgnIPtG_rf4zbXIrF0sj69j5_hfRF6T-ArIVReZuvdaF09tOScvkILAlo0mgJ7jRYATDYtKHGK3ua8A6iZZm_QKSVUU81hgVab6XBILmcfRxwHvIwh-IfDBLy580PJ2I_Y4E1JcdyGe7wai0vGFj9u8dqU4q3DyxDt73N0MpiQ3bv5PUPXP75fL6-a9a-fq-W3dWMFa0vTUj1Q1fZ8UFZTSpQjYHrjGChioVXC8FvR255LJ3lvJZVWS8mVFs6CbNkZujhqDyn-mVwu3d5n60Iwo4tT7jQozRgn6kWyFUxXtaCV_PwfuYtTqhU8QqoWS0SFLo-QTTHn5IbukPzepPuOQPcwRjeP0c1j1B8fZ-3U793tM__UfgW-zIDJ1oQhmdH6_I9jmhDyKPpw5Ha5xPScc1KnVYLX_NMxH0zszDZVx82GAmFANJdCc_YXekakQQ</recordid><startdate>20110225</startdate><enddate>20110225</enddate><creator>Swallows, Matthew D</creator><creator>Bishof, Michael</creator><creator>Lin, Yige</creator><creator>Blatt, Sebastian</creator><creator>Martin, Michael J</creator><creator>Rey, Ana Maria</creator><creator>Ye, Jun</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110225</creationdate><title>Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock</title><author>Swallows, Matthew D ; Bishof, Michael ; Lin, Yige ; Blatt, Sebastian ; Martin, Michael J ; Rey, Ana Maria ; Ye, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-829f278b4f7c92217e10abae3071c0875a4d5bcb46e64bc626c9664795ec0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic clocks</topic><topic>Atomic interactions</topic><topic>Atoms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Clocks</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Extreme values</topic><topic>Frequency shift</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematical lattices</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Optical lattices</topic><topic>Particle interactions</topic><topic>Particles</topic><topic>Physics</topic><topic>Singlet state</topic><topic>Strong nuclear force</topic><topic>Strontium</topic><topic>Time and frequency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swallows, Matthew D</creatorcontrib><creatorcontrib>Bishof, Michael</creatorcontrib><creatorcontrib>Lin, Yige</creatorcontrib><creatorcontrib>Blatt, Sebastian</creatorcontrib><creatorcontrib>Martin, Michael J</creatorcontrib><creatorcontrib>Rey, Ana Maria</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swallows, Matthew D</au><au>Bishof, Michael</au><au>Lin, Yige</au><au>Blatt, Sebastian</au><au>Martin, Michael J</au><au>Rey, Ana Maria</au><au>Ye, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-02-25</date><risdate>2011</risdate><volume>331</volume><issue>6020</issue><spage>1043</spage><epage>1046</epage><pages>1043-1046</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10⁻¹⁷. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21292940</pmid><doi>10.1126/science.1196442</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-02, Vol.331 (6020), p.1043-1046
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_907933417
source JSTOR; Science Online科学在线
subjects Atomic clocks
Atomic interactions
Atoms
Atoms & subatomic particles
Clocks
Density
Exact sciences and technology
Extreme values
Frequency shift
Laser beams
Lasers
Lattice theory
Lattices
Mathematical lattices
Measurements common to several branches of physics and astronomy
Metrology, measurements and laboratory procedures
Optical lattices
Particle interactions
Particles
Physics
Singlet state
Strong nuclear force
Strontium
Time and frequency
title Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Collisional%20Shifts%20in%20a%20Strongly%20Interacting%20Lattice%20Clock&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Swallows,%20Matthew%20D&rft.date=2011-02-25&rft.volume=331&rft.issue=6020&rft.spage=1043&rft.epage=1046&rft.pages=1043-1046&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1196442&rft_dat=%3Cjstor_proqu%3E41075754%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853744215&rft_id=info:pmid/21292940&rft_jstor_id=41075754&rfr_iscdi=true