Predicting odor mixture's responses on machine olfaction sensors

One of the challenging issues in current research on machine olfaction devices, which are often called electronic noses (e-noses), is how to approximate or predict the sensor response to odor mixtures. When each odor is produced by its own unique set of odorant compounds, combinations of these uniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2011-07, Vol.155 (2), p.473-482
Hauptverfasser: Phaisangittisagul, Ekachai, Nagle, H. Troy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 2
container_start_page 473
container_title Sensors and actuators. B, Chemical
container_volume 155
creator Phaisangittisagul, Ekachai
Nagle, H. Troy
description One of the challenging issues in current research on machine olfaction devices, which are often called electronic noses (e-noses), is how to approximate or predict the sensor response to odor mixtures. When each odor is produced by its own unique set of odorant compounds, combinations of these unique odorant sets create a sensing challenge for the e-noses with a limited number of elements in its sensing array. One possible approach proposed in the literature is based on an “additive law of mixing” model but it fails in a complex odor mixtures. Another method adopted a specific hardware solution called odor recorder developed by using active odor sensing system. In this study, signal decomposition/reconstruction based on wavelet analysis and support vector regression are adopted to predict a sensor's response to mixtures of odors. The prediction results of our method are investigated and compared with the real sensor responses collected from a commercial e-nose machine, the AppliedSensor NST 3320. We find that the proposed method provides good prediction when applied to different mixing ratios of some coffees and green tea.
doi_str_mv 10.1016/j.snb.2010.12.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907933312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400510009792</els_id><sourcerecordid>907933312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-32b2d27e975d2c9904a011d3af9e14a92019b14f697571711f402ca7c4260d573</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_wJN762nXSbK7afCiFF9QUNCeQ5qdrSntpma2ov_eLPXsaZjhm9fH2CWHggOvr9cFdctCwJCLAkp9xEZ8qmQuQaljNgItqrwEqE7ZGdEaAEpZw4jdvkZsvOt9t8pCE2K29d_9PuKEsoi0Cx0hZaHLttZ9-A6zsGltolOFsKMQ6ZydtHZDePEXx2zxcP8-e8rnL4_Ps7t57mQl-1yKpWiEQq2qRjitobTAeSNtq5GXVqfL9ZKXbZ0AxRXnbQnCWeVKUUNTKTlmk8PcXQyfe6TebD053Gxsh2FPRoPSUkouEskPpIuBKGJrdtFvbfwxHMwgy6xNkmUGWYYLk2SlnqtDT2uDsavoySzeElBBulJNxbD_5kBgevLLYzTkPHYu2YvoetME_8_8X7u0eiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907933312</pqid></control><display><type>article</type><title>Predicting odor mixture's responses on machine olfaction sensors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Phaisangittisagul, Ekachai ; Nagle, H. Troy</creator><creatorcontrib>Phaisangittisagul, Ekachai ; Nagle, H. Troy</creatorcontrib><description>One of the challenging issues in current research on machine olfaction devices, which are often called electronic noses (e-noses), is how to approximate or predict the sensor response to odor mixtures. When each odor is produced by its own unique set of odorant compounds, combinations of these unique odorant sets create a sensing challenge for the e-noses with a limited number of elements in its sensing array. One possible approach proposed in the literature is based on an “additive law of mixing” model but it fails in a complex odor mixtures. Another method adopted a specific hardware solution called odor recorder developed by using active odor sensing system. In this study, signal decomposition/reconstruction based on wavelet analysis and support vector regression are adopted to predict a sensor's response to mixtures of odors. The prediction results of our method are investigated and compared with the real sensor responses collected from a commercial e-nose machine, the AppliedSensor NST 3320. We find that the proposed method provides good prediction when applied to different mixing ratios of some coffees and green tea.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2010.12.049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>electronic nose ; Electronic noses (e-noses) ; green tea ; mixing ; odor compounds ; Odor mixtures ; odors ; prediction ; Real-valued genetic algorithm ; Sensor response ; Support vector regression ; wavelet ; Wavelet decomposition/reconstruction</subject><ispartof>Sensors and actuators. B, Chemical, 2011-07, Vol.155 (2), p.473-482</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-32b2d27e975d2c9904a011d3af9e14a92019b14f697571711f402ca7c4260d573</citedby><cites>FETCH-LOGICAL-c353t-32b2d27e975d2c9904a011d3af9e14a92019b14f697571711f402ca7c4260d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2010.12.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Phaisangittisagul, Ekachai</creatorcontrib><creatorcontrib>Nagle, H. Troy</creatorcontrib><title>Predicting odor mixture's responses on machine olfaction sensors</title><title>Sensors and actuators. B, Chemical</title><description>One of the challenging issues in current research on machine olfaction devices, which are often called electronic noses (e-noses), is how to approximate or predict the sensor response to odor mixtures. When each odor is produced by its own unique set of odorant compounds, combinations of these unique odorant sets create a sensing challenge for the e-noses with a limited number of elements in its sensing array. One possible approach proposed in the literature is based on an “additive law of mixing” model but it fails in a complex odor mixtures. Another method adopted a specific hardware solution called odor recorder developed by using active odor sensing system. In this study, signal decomposition/reconstruction based on wavelet analysis and support vector regression are adopted to predict a sensor's response to mixtures of odors. The prediction results of our method are investigated and compared with the real sensor responses collected from a commercial e-nose machine, the AppliedSensor NST 3320. We find that the proposed method provides good prediction when applied to different mixing ratios of some coffees and green tea.</description><subject>electronic nose</subject><subject>Electronic noses (e-noses)</subject><subject>green tea</subject><subject>mixing</subject><subject>odor compounds</subject><subject>Odor mixtures</subject><subject>odors</subject><subject>prediction</subject><subject>Real-valued genetic algorithm</subject><subject>Sensor response</subject><subject>Support vector regression</subject><subject>wavelet</subject><subject>Wavelet decomposition/reconstruction</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_wJN762nXSbK7afCiFF9QUNCeQ5qdrSntpma2ov_eLPXsaZjhm9fH2CWHggOvr9cFdctCwJCLAkp9xEZ8qmQuQaljNgItqrwEqE7ZGdEaAEpZw4jdvkZsvOt9t8pCE2K29d_9PuKEsoi0Cx0hZaHLttZ9-A6zsGltolOFsKMQ6ZydtHZDePEXx2zxcP8-e8rnL4_Ps7t57mQl-1yKpWiEQq2qRjitobTAeSNtq5GXVqfL9ZKXbZ0AxRXnbQnCWeVKUUNTKTlmk8PcXQyfe6TebD053Gxsh2FPRoPSUkouEskPpIuBKGJrdtFvbfwxHMwgy6xNkmUGWYYLk2SlnqtDT2uDsavoySzeElBBulJNxbD_5kBgevLLYzTkPHYu2YvoetME_8_8X7u0eiY</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Phaisangittisagul, Ekachai</creator><creator>Nagle, H. Troy</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110720</creationdate><title>Predicting odor mixture's responses on machine olfaction sensors</title><author>Phaisangittisagul, Ekachai ; Nagle, H. Troy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-32b2d27e975d2c9904a011d3af9e14a92019b14f697571711f402ca7c4260d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>electronic nose</topic><topic>Electronic noses (e-noses)</topic><topic>green tea</topic><topic>mixing</topic><topic>odor compounds</topic><topic>Odor mixtures</topic><topic>odors</topic><topic>prediction</topic><topic>Real-valued genetic algorithm</topic><topic>Sensor response</topic><topic>Support vector regression</topic><topic>wavelet</topic><topic>Wavelet decomposition/reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phaisangittisagul, Ekachai</creatorcontrib><creatorcontrib>Nagle, H. Troy</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phaisangittisagul, Ekachai</au><au>Nagle, H. Troy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting odor mixture's responses on machine olfaction sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2011-07-20</date><risdate>2011</risdate><volume>155</volume><issue>2</issue><spage>473</spage><epage>482</epage><pages>473-482</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>One of the challenging issues in current research on machine olfaction devices, which are often called electronic noses (e-noses), is how to approximate or predict the sensor response to odor mixtures. When each odor is produced by its own unique set of odorant compounds, combinations of these unique odorant sets create a sensing challenge for the e-noses with a limited number of elements in its sensing array. One possible approach proposed in the literature is based on an “additive law of mixing” model but it fails in a complex odor mixtures. Another method adopted a specific hardware solution called odor recorder developed by using active odor sensing system. In this study, signal decomposition/reconstruction based on wavelet analysis and support vector regression are adopted to predict a sensor's response to mixtures of odors. The prediction results of our method are investigated and compared with the real sensor responses collected from a commercial e-nose machine, the AppliedSensor NST 3320. We find that the proposed method provides good prediction when applied to different mixing ratios of some coffees and green tea.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2010.12.049</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2011-07, Vol.155 (2), p.473-482
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_907933312
source ScienceDirect Journals (5 years ago - present)
subjects electronic nose
Electronic noses (e-noses)
green tea
mixing
odor compounds
Odor mixtures
odors
prediction
Real-valued genetic algorithm
Sensor response
Support vector regression
wavelet
Wavelet decomposition/reconstruction
title Predicting odor mixture's responses on machine olfaction sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20odor%20mixture's%20responses%20on%20machine%20olfaction%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Phaisangittisagul,%20Ekachai&rft.date=2011-07-20&rft.volume=155&rft.issue=2&rft.spage=473&rft.epage=482&rft.pages=473-482&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2010.12.049&rft_dat=%3Cproquest_cross%3E907933312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907933312&rft_id=info:pmid/&rft_els_id=S0925400510009792&rfr_iscdi=true