Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate

Nowadays, continuous chemical processes ('flow chemistry') using micro process technology are becoming highly competitive, both for cost (better selectivity, higher productivity) and sustainability (low environmental impact) reasons. The first needs true process intensification and the sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2011-01, Vol.13 (7), p.1799-1805
Hauptverfasser: ESCRIBA, Marc, HESSEL, Volker, ROTHSTOCK, Sonja, ERAS, Jordi, CANELA, Ramon, LÖB, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1805
container_issue 7
container_start_page 1799
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 13
creator ESCRIBA, Marc
HESSEL, Volker
ROTHSTOCK, Sonja
ERAS, Jordi
CANELA, Ramon
LÖB, Patrick
description Nowadays, continuous chemical processes ('flow chemistry') using micro process technology are becoming highly competitive, both for cost (better selectivity, higher productivity) and sustainability (low environmental impact) reasons. The first needs true process intensification and the second, among others, new eco-efficient starting and product materials. In this context, a new application for glycerol is reported with increasing industrial interest and tested here under highly intensified conditions. Starting from prior batch processing experience, it is reported about the transfer to a continuous process to transform dichloropropyl pivaloate, prepared from glycerol, into 3-chloro-2-hydroxypropyl ester. The continuous microreactor based process has up to three orders-of-magnitude reduced reaction times (5760[times]) by virtue of exploiting unusual experimental conditions in organic chemistry (Novel Process Windows), i.e. superheated pressurised processing much above the boiling point. The yields are fully comparable with the ones obtained under batch conditions, but with (expected) loss in selectivity through enhanced diproduct formation. This principally enables the new continuous process to target much higher productivities; however this also results in a more complex reaction mixture therefore the ease of separation and commercial value of the second product will decide its exploitation. Beyond such benefits for the individual reaction under investigation, this is among the very first reports about a superheated reaction with a distinct selectivity issue with two known byproduct pathways, and thus provides the first respective generic information after an upheavalled reporting on capillary- or microreactor-based superheated processing, so far mostly done for less complex reactions.
doi_str_mv 10.1039/c0gc00655f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907184685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907184685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d19609faf4fd313826ac57797e77fe189520289452a7fe77cc3afea7789baa323</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWB8bf0E2IgjRPGaSybIUX1Bwo-vhNpO0kXQyJlNx_r2RFl2de-G7h3sOQleM3jEq9L2ha0OprGt3hGaskoJorujx3yz5KTrL-YNSxpSsZqibD0OYfL_GgE3sR9_v4i5jA4MPAdJEVpBth4cUjc0ZjxGPG4vz1BfJPuPosCBmE2KKhJPN1KX4PRV6mAIe_BeECKO9QCcOQraXBz1H748Pb4tnsnx9elnMl8QIUY2kY1pS7cBVrhNMNFyCqZXSyirlLGt0zSlvdFVzKLtSxghwFpRq9ApAcHGObva-5YHPnc1ju_XZ2BKktyVVq6liTSWbupC3e9KkmHOyrh2S35a8LaPtb5Ptf5MFvj7YQjYQXILe-Px3wStRU6mF-AH9bHUH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907184685</pqid></control><display><type>article</type><title>Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>ESCRIBA, Marc ; HESSEL, Volker ; ROTHSTOCK, Sonja ; ERAS, Jordi ; CANELA, Ramon ; LÖB, Patrick</creator><creatorcontrib>ESCRIBA, Marc ; HESSEL, Volker ; ROTHSTOCK, Sonja ; ERAS, Jordi ; CANELA, Ramon ; LÖB, Patrick</creatorcontrib><description>Nowadays, continuous chemical processes ('flow chemistry') using micro process technology are becoming highly competitive, both for cost (better selectivity, higher productivity) and sustainability (low environmental impact) reasons. The first needs true process intensification and the second, among others, new eco-efficient starting and product materials. In this context, a new application for glycerol is reported with increasing industrial interest and tested here under highly intensified conditions. Starting from prior batch processing experience, it is reported about the transfer to a continuous process to transform dichloropropyl pivaloate, prepared from glycerol, into 3-chloro-2-hydroxypropyl ester. The continuous microreactor based process has up to three orders-of-magnitude reduced reaction times (5760[times]) by virtue of exploiting unusual experimental conditions in organic chemistry (Novel Process Windows), i.e. superheated pressurised processing much above the boiling point. The yields are fully comparable with the ones obtained under batch conditions, but with (expected) loss in selectivity through enhanced diproduct formation. This principally enables the new continuous process to target much higher productivities; however this also results in a more complex reaction mixture therefore the ease of separation and commercial value of the second product will decide its exploitation. Beyond such benefits for the individual reaction under investigation, this is among the very first reports about a superheated reaction with a distinct selectivity issue with two known byproduct pathways, and thus provides the first respective generic information after an upheavalled reporting on capillary- or microreactor-based superheated processing, so far mostly done for less complex reactions.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c0gc00655f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Reactors</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2011-01, Vol.13 (7), p.1799-1805</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d19609faf4fd313826ac57797e77fe189520289452a7fe77cc3afea7789baa323</citedby><cites>FETCH-LOGICAL-c334t-d19609faf4fd313826ac57797e77fe189520289452a7fe77cc3afea7789baa323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24350693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ESCRIBA, Marc</creatorcontrib><creatorcontrib>HESSEL, Volker</creatorcontrib><creatorcontrib>ROTHSTOCK, Sonja</creatorcontrib><creatorcontrib>ERAS, Jordi</creatorcontrib><creatorcontrib>CANELA, Ramon</creatorcontrib><creatorcontrib>LÖB, Patrick</creatorcontrib><title>Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Nowadays, continuous chemical processes ('flow chemistry') using micro process technology are becoming highly competitive, both for cost (better selectivity, higher productivity) and sustainability (low environmental impact) reasons. The first needs true process intensification and the second, among others, new eco-efficient starting and product materials. In this context, a new application for glycerol is reported with increasing industrial interest and tested here under highly intensified conditions. Starting from prior batch processing experience, it is reported about the transfer to a continuous process to transform dichloropropyl pivaloate, prepared from glycerol, into 3-chloro-2-hydroxypropyl ester. The continuous microreactor based process has up to three orders-of-magnitude reduced reaction times (5760[times]) by virtue of exploiting unusual experimental conditions in organic chemistry (Novel Process Windows), i.e. superheated pressurised processing much above the boiling point. The yields are fully comparable with the ones obtained under batch conditions, but with (expected) loss in selectivity through enhanced diproduct formation. This principally enables the new continuous process to target much higher productivities; however this also results in a more complex reaction mixture therefore the ease of separation and commercial value of the second product will decide its exploitation. Beyond such benefits for the individual reaction under investigation, this is among the very first reports about a superheated reaction with a distinct selectivity issue with two known byproduct pathways, and thus provides the first respective generic information after an upheavalled reporting on capillary- or microreactor-based superheated processing, so far mostly done for less complex reactions.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Reactors</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWB8bf0E2IgjRPGaSybIUX1Bwo-vhNpO0kXQyJlNx_r2RFl2de-G7h3sOQleM3jEq9L2ha0OprGt3hGaskoJorujx3yz5KTrL-YNSxpSsZqibD0OYfL_GgE3sR9_v4i5jA4MPAdJEVpBth4cUjc0ZjxGPG4vz1BfJPuPosCBmE2KKhJPN1KX4PRV6mAIe_BeECKO9QCcOQraXBz1H748Pb4tnsnx9elnMl8QIUY2kY1pS7cBVrhNMNFyCqZXSyirlLGt0zSlvdFVzKLtSxghwFpRq9ApAcHGObva-5YHPnc1ju_XZ2BKktyVVq6liTSWbupC3e9KkmHOyrh2S35a8LaPtb5Ptf5MFvj7YQjYQXILe-Px3wStRU6mF-AH9bHUH</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>ESCRIBA, Marc</creator><creator>HESSEL, Volker</creator><creator>ROTHSTOCK, Sonja</creator><creator>ERAS, Jordi</creator><creator>CANELA, Ramon</creator><creator>LÖB, Patrick</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20110101</creationdate><title>Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate</title><author>ESCRIBA, Marc ; HESSEL, Volker ; ROTHSTOCK, Sonja ; ERAS, Jordi ; CANELA, Ramon ; LÖB, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d19609faf4fd313826ac57797e77fe189520289452a7fe77cc3afea7789baa323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ESCRIBA, Marc</creatorcontrib><creatorcontrib>HESSEL, Volker</creatorcontrib><creatorcontrib>ROTHSTOCK, Sonja</creatorcontrib><creatorcontrib>ERAS, Jordi</creatorcontrib><creatorcontrib>CANELA, Ramon</creatorcontrib><creatorcontrib>LÖB, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ESCRIBA, Marc</au><au>HESSEL, Volker</au><au>ROTHSTOCK, Sonja</au><au>ERAS, Jordi</au><au>CANELA, Ramon</au><au>LÖB, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>13</volume><issue>7</issue><spage>1799</spage><epage>1805</epage><pages>1799-1805</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Nowadays, continuous chemical processes ('flow chemistry') using micro process technology are becoming highly competitive, both for cost (better selectivity, higher productivity) and sustainability (low environmental impact) reasons. The first needs true process intensification and the second, among others, new eco-efficient starting and product materials. In this context, a new application for glycerol is reported with increasing industrial interest and tested here under highly intensified conditions. Starting from prior batch processing experience, it is reported about the transfer to a continuous process to transform dichloropropyl pivaloate, prepared from glycerol, into 3-chloro-2-hydroxypropyl ester. The continuous microreactor based process has up to three orders-of-magnitude reduced reaction times (5760[times]) by virtue of exploiting unusual experimental conditions in organic chemistry (Novel Process Windows), i.e. superheated pressurised processing much above the boiling point. The yields are fully comparable with the ones obtained under batch conditions, but with (expected) loss in selectivity through enhanced diproduct formation. This principally enables the new continuous process to target much higher productivities; however this also results in a more complex reaction mixture therefore the ease of separation and commercial value of the second product will decide its exploitation. Beyond such benefits for the individual reaction under investigation, this is among the very first reports about a superheated reaction with a distinct selectivity issue with two known byproduct pathways, and thus provides the first respective generic information after an upheavalled reporting on capillary- or microreactor-based superheated processing, so far mostly done for less complex reactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c0gc00655f</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2011-01, Vol.13 (7), p.1799-1805
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_miscellaneous_907184685
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Reactors
title Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20a%20continuous%20capillary-based%20process%20to%20the%20synthesis%20of%203-chloro-2-hydroxypropyl%20pivaloate&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=ESCRIBA,%20Marc&rft.date=2011-01-01&rft.volume=13&rft.issue=7&rft.spage=1799&rft.epage=1805&rft.pages=1799-1805&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c0gc00655f&rft_dat=%3Cproquest_cross%3E907184685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907184685&rft_id=info:pmid/&rfr_iscdi=true