Coal power plant flue gas waste heat and water recovery

► We developed a transport membrane condenser to extract water vapor from flue gases. ► The recovered energy from water vapor improves boiler efficiency and saved water. ► We further developed the technology for coal-fired power plant flue gases. ► We validated the TMC performance for different flue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2012-03, Vol.91 (1), p.341-348
Hauptverfasser: Wang, Dexin, Bao, Ainan, Kunc, Walter, Liss, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 1
container_start_page 341
container_title Applied energy
container_volume 91
creator Wang, Dexin
Bao, Ainan
Kunc, Walter
Liss, William
description ► We developed a transport membrane condenser to extract water vapor from flue gases. ► The recovered energy from water vapor improves boiler efficiency and saved water. ► We further developed the technology for coal-fired power plant flue gases. ► We validated the TMC performance for different flue gas conditions. An advanced waste heat and water recovery technology has been developed to extract a portion of the water vapor and its latent heat from flue gases based on a nanoporous ceramic membrane capillary condensation separation mechanism. The recovered water is of high quality and mineral free, therefore can be used as supplemental makeup water for almost all industrial processes. The technology was first developed and proven at industrial demonstration scale for gas-fired package boilers, and already commercialized. The technology was thereafter further developed to a two-stage design tailored to coal power plant flue gas applications. The recovered water and heat can be used directly to replace power plant boiler makeup water to improve its efficiency, and any remaining recovered water can be used for flue gas desulfurization (FGD) water makeup or other plant uses. The technology will be particularly beneficial for coal-fired power plants that use high-moisture coals and/or FGD for flue gas cleanup.
doi_str_mv 10.1016/j.apenergy.2011.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907184622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261911006520</els_id><sourcerecordid>907184622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-5244c68319cf3b9ab9a0e6972df9d27ddf0106c65736d46ff29a2bc6170b45253</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouD7-gvaml66TtE2am7L4ggUPuueQTSZrl25bk-4u--9NqV4VBoYZvnnwEXJFYUqB8rv1VHfYoF8dpgwojc0pQHZEJrQULJWUlsdkAhnwlHEqT8lZCGsAYJTBhIhZq-uka_fok67WTZ-4eovJSodkr0OPySfqPtGNjWUfGY-m3aE_XJATp-uAlz_5nCyeHj9mL-n87fl19jBPTc5FnxYszw0vMyqNy5ZSxwDkUjDrpGXCWgcUuOGFyLjNuXNMarY0nApY5gUrsnNyM-7tfPu1xdCrTRUM1vFVbLdBSRC0zDljkbz9k6RCiOirgDyifESNb0Pw6FTnq432B0VBDU7VWv06VYPToR-dxsHrcdDpVumVr4JavEeADz6zsoRI3I8ERim7Cr0KpsLGoK2iul7ZtvrvyDf3H4qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777101504</pqid></control><display><type>article</type><title>Coal power plant flue gas waste heat and water recovery</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Dexin ; Bao, Ainan ; Kunc, Walter ; Liss, William</creator><creatorcontrib>Wang, Dexin ; Bao, Ainan ; Kunc, Walter ; Liss, William</creatorcontrib><description>► We developed a transport membrane condenser to extract water vapor from flue gases. ► The recovered energy from water vapor improves boiler efficiency and saved water. ► We further developed the technology for coal-fired power plant flue gases. ► We validated the TMC performance for different flue gas conditions. An advanced waste heat and water recovery technology has been developed to extract a portion of the water vapor and its latent heat from flue gases based on a nanoporous ceramic membrane capillary condensation separation mechanism. The recovered water is of high quality and mineral free, therefore can be used as supplemental makeup water for almost all industrial processes. The technology was first developed and proven at industrial demonstration scale for gas-fired package boilers, and already commercialized. The technology was thereafter further developed to a two-stage design tailored to coal power plant flue gas applications. The recovered water and heat can be used directly to replace power plant boiler makeup water to improve its efficiency, and any remaining recovered water can be used for flue gas desulfurization (FGD) water makeup or other plant uses. The technology will be particularly beneficial for coal-fired power plants that use high-moisture coals and/or FGD for flue gas cleanup.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2011.10.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boiler flue gas ; Boilers ; Capillary condensation ; ceramics ; Coal ; condensation ; Electric power generation ; Electric power plants ; Flues ; heat ; High moisture content exhaust gases ; Nanostructure ; power plants ; Recovery ; technology ; Transport membrane condenser ; Waste heat ; Waste heat recovery ; water vapor</subject><ispartof>Applied energy, 2012-03, Vol.91 (1), p.341-348</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-5244c68319cf3b9ab9a0e6972df9d27ddf0106c65736d46ff29a2bc6170b45253</citedby><cites>FETCH-LOGICAL-c467t-5244c68319cf3b9ab9a0e6972df9d27ddf0106c65736d46ff29a2bc6170b45253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261911006520$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Dexin</creatorcontrib><creatorcontrib>Bao, Ainan</creatorcontrib><creatorcontrib>Kunc, Walter</creatorcontrib><creatorcontrib>Liss, William</creatorcontrib><title>Coal power plant flue gas waste heat and water recovery</title><title>Applied energy</title><description>► We developed a transport membrane condenser to extract water vapor from flue gases. ► The recovered energy from water vapor improves boiler efficiency and saved water. ► We further developed the technology for coal-fired power plant flue gases. ► We validated the TMC performance for different flue gas conditions. An advanced waste heat and water recovery technology has been developed to extract a portion of the water vapor and its latent heat from flue gases based on a nanoporous ceramic membrane capillary condensation separation mechanism. The recovered water is of high quality and mineral free, therefore can be used as supplemental makeup water for almost all industrial processes. The technology was first developed and proven at industrial demonstration scale for gas-fired package boilers, and already commercialized. The technology was thereafter further developed to a two-stage design tailored to coal power plant flue gas applications. The recovered water and heat can be used directly to replace power plant boiler makeup water to improve its efficiency, and any remaining recovered water can be used for flue gas desulfurization (FGD) water makeup or other plant uses. The technology will be particularly beneficial for coal-fired power plants that use high-moisture coals and/or FGD for flue gas cleanup.</description><subject>Boiler flue gas</subject><subject>Boilers</subject><subject>Capillary condensation</subject><subject>ceramics</subject><subject>Coal</subject><subject>condensation</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Flues</subject><subject>heat</subject><subject>High moisture content exhaust gases</subject><subject>Nanostructure</subject><subject>power plants</subject><subject>Recovery</subject><subject>technology</subject><subject>Transport membrane condenser</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>water vapor</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouD7-gvaml66TtE2am7L4ggUPuueQTSZrl25bk-4u--9NqV4VBoYZvnnwEXJFYUqB8rv1VHfYoF8dpgwojc0pQHZEJrQULJWUlsdkAhnwlHEqT8lZCGsAYJTBhIhZq-uka_fok67WTZ-4eovJSodkr0OPySfqPtGNjWUfGY-m3aE_XJATp-uAlz_5nCyeHj9mL-n87fl19jBPTc5FnxYszw0vMyqNy5ZSxwDkUjDrpGXCWgcUuOGFyLjNuXNMarY0nApY5gUrsnNyM-7tfPu1xdCrTRUM1vFVbLdBSRC0zDljkbz9k6RCiOirgDyifESNb0Pw6FTnq432B0VBDU7VWv06VYPToR-dxsHrcdDpVumVr4JavEeADz6zsoRI3I8ERim7Cr0KpsLGoK2iul7ZtvrvyDf3H4qT</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Wang, Dexin</creator><creator>Bao, Ainan</creator><creator>Kunc, Walter</creator><creator>Liss, William</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20120301</creationdate><title>Coal power plant flue gas waste heat and water recovery</title><author>Wang, Dexin ; Bao, Ainan ; Kunc, Walter ; Liss, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-5244c68319cf3b9ab9a0e6972df9d27ddf0106c65736d46ff29a2bc6170b45253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boiler flue gas</topic><topic>Boilers</topic><topic>Capillary condensation</topic><topic>ceramics</topic><topic>Coal</topic><topic>condensation</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Flues</topic><topic>heat</topic><topic>High moisture content exhaust gases</topic><topic>Nanostructure</topic><topic>power plants</topic><topic>Recovery</topic><topic>technology</topic><topic>Transport membrane condenser</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dexin</creatorcontrib><creatorcontrib>Bao, Ainan</creatorcontrib><creatorcontrib>Kunc, Walter</creatorcontrib><creatorcontrib>Liss, William</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dexin</au><au>Bao, Ainan</au><au>Kunc, Walter</au><au>Liss, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coal power plant flue gas waste heat and water recovery</atitle><jtitle>Applied energy</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>91</volume><issue>1</issue><spage>341</spage><epage>348</epage><pages>341-348</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>► We developed a transport membrane condenser to extract water vapor from flue gases. ► The recovered energy from water vapor improves boiler efficiency and saved water. ► We further developed the technology for coal-fired power plant flue gases. ► We validated the TMC performance for different flue gas conditions. An advanced waste heat and water recovery technology has been developed to extract a portion of the water vapor and its latent heat from flue gases based on a nanoporous ceramic membrane capillary condensation separation mechanism. The recovered water is of high quality and mineral free, therefore can be used as supplemental makeup water for almost all industrial processes. The technology was first developed and proven at industrial demonstration scale for gas-fired package boilers, and already commercialized. The technology was thereafter further developed to a two-stage design tailored to coal power plant flue gas applications. The recovered water and heat can be used directly to replace power plant boiler makeup water to improve its efficiency, and any remaining recovered water can be used for flue gas desulfurization (FGD) water makeup or other plant uses. The technology will be particularly beneficial for coal-fired power plants that use high-moisture coals and/or FGD for flue gas cleanup.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2011.10.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2012-03, Vol.91 (1), p.341-348
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_907184622
source Elsevier ScienceDirect Journals
subjects Boiler flue gas
Boilers
Capillary condensation
ceramics
Coal
condensation
Electric power generation
Electric power plants
Flues
heat
High moisture content exhaust gases
Nanostructure
power plants
Recovery
technology
Transport membrane condenser
Waste heat
Waste heat recovery
water vapor
title Coal power plant flue gas waste heat and water recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coal%20power%20plant%20flue%20gas%20waste%20heat%20and%20water%20recovery&rft.jtitle=Applied%20energy&rft.au=Wang,%20Dexin&rft.date=2012-03-01&rft.volume=91&rft.issue=1&rft.spage=341&rft.epage=348&rft.pages=341-348&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2011.10.003&rft_dat=%3Cproquest_cross%3E907184622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777101504&rft_id=info:pmid/&rft_els_id=S0306261911006520&rfr_iscdi=true