Microporous organic polymers for carbon dioxide capture

Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2011-01, Vol.4 (10), p.4239-4245
Hauptverfasser: Dawson, Robert, Stockel, Ev, Holst, James R, Adams, Dave J, Cooper, Andrew I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4245
container_issue 10
container_start_page 4239
container_title Energy & environmental science
container_volume 4
creator Dawson, Robert
Stockel, Ev
Holst, James R
Adams, Dave J
Cooper, Andrew I
description Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.
doi_str_mv 10.1039/C1EE01971F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907182903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907182903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsXP8HeFGF1Jn82yVFKq0LFi56XNJmVlW2zJluw396t1aunmYEfb957jF0i3CIIezfD-RzQalwcsQlqJUuloTr-2yvLT9lZzh8AFQdtJ0w_tz7FPqa4zUVM727T-qKP3W5NKRdNTIV3aRU3RWjjVxtoPPthm-icnTSuy3TxO6fsbTF_nT2Wy5eHp9n9svSi4kMp0YXGU7BgBZBZOZSkRGPRSvIOjeRGhtG4glXgShnnUQajK2ss5wpRTNnVQbdP8XNLeajXbfbUdW5Do-XagkbDLYiRvP6XxErj-MjAXvTmgI7Rc07U1H1q1y7taoR632Ptkeinx0Z8AxejZBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671395801</pqid></control><display><type>article</type><title>Microporous organic polymers for carbon dioxide capture</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</creator><creatorcontrib>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</creatorcontrib><description>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C1EE01971F</identifier><language>eng</language><subject>Adsorbents ; Affinity ; Carbon dioxide ; Global warming ; Low pressure ; Polymers ; Tuning ; Uptakes</subject><ispartof>Energy &amp; environmental science, 2011-01, Vol.4 (10), p.4239-4245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</citedby><cites>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dawson, Robert</creatorcontrib><creatorcontrib>Stockel, Ev</creatorcontrib><creatorcontrib>Holst, James R</creatorcontrib><creatorcontrib>Adams, Dave J</creatorcontrib><creatorcontrib>Cooper, Andrew I</creatorcontrib><title>Microporous organic polymers for carbon dioxide capture</title><title>Energy &amp; environmental science</title><description>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</description><subject>Adsorbents</subject><subject>Affinity</subject><subject>Carbon dioxide</subject><subject>Global warming</subject><subject>Low pressure</subject><subject>Polymers</subject><subject>Tuning</subject><subject>Uptakes</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsXP8HeFGF1Jn82yVFKq0LFi56XNJmVlW2zJluw396t1aunmYEfb957jF0i3CIIezfD-RzQalwcsQlqJUuloTr-2yvLT9lZzh8AFQdtJ0w_tz7FPqa4zUVM727T-qKP3W5NKRdNTIV3aRU3RWjjVxtoPPthm-icnTSuy3TxO6fsbTF_nT2Wy5eHp9n9svSi4kMp0YXGU7BgBZBZOZSkRGPRSvIOjeRGhtG4glXgShnnUQajK2ss5wpRTNnVQbdP8XNLeajXbfbUdW5Do-XagkbDLYiRvP6XxErj-MjAXvTmgI7Rc07U1H1q1y7taoR632Ptkeinx0Z8AxejZBE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Dawson, Robert</creator><creator>Stockel, Ev</creator><creator>Holst, James R</creator><creator>Adams, Dave J</creator><creator>Cooper, Andrew I</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110101</creationdate><title>Microporous organic polymers for carbon dioxide capture</title><author>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorbents</topic><topic>Affinity</topic><topic>Carbon dioxide</topic><topic>Global warming</topic><topic>Low pressure</topic><topic>Polymers</topic><topic>Tuning</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Robert</creatorcontrib><creatorcontrib>Stockel, Ev</creatorcontrib><creatorcontrib>Holst, James R</creatorcontrib><creatorcontrib>Adams, Dave J</creatorcontrib><creatorcontrib>Cooper, Andrew I</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Robert</au><au>Stockel, Ev</au><au>Holst, James R</au><au>Adams, Dave J</au><au>Cooper, Andrew I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microporous organic polymers for carbon dioxide capture</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>10</issue><spage>4239</spage><epage>4245</epage><pages>4239-4245</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</abstract><doi>10.1039/C1EE01971F</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2011-01, Vol.4 (10), p.4239-4245
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_907182903
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorbents
Affinity
Carbon dioxide
Global warming
Low pressure
Polymers
Tuning
Uptakes
title Microporous organic polymers for carbon dioxide capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microporous%20organic%20polymers%20for%20carbon%20dioxide%20capture&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Dawson,%20Robert&rft.date=2011-01-01&rft.volume=4&rft.issue=10&rft.spage=4239&rft.epage=4245&rft.pages=4239-4245&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C1EE01971F&rft_dat=%3Cproquest_cross%3E907182903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671395801&rft_id=info:pmid/&rfr_iscdi=true