Microporous organic polymers for carbon dioxide capture
Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2011-01, Vol.4 (10), p.4239-4245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4245 |
---|---|
container_issue | 10 |
container_start_page | 4239 |
container_title | Energy & environmental science |
container_volume | 4 |
creator | Dawson, Robert Stockel, Ev Holst, James R Adams, Dave J Cooper, Andrew I |
description | Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area. |
doi_str_mv | 10.1039/C1EE01971F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907182903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907182903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsXP8HeFGF1Jn82yVFKq0LFi56XNJmVlW2zJluw396t1aunmYEfb957jF0i3CIIezfD-RzQalwcsQlqJUuloTr-2yvLT9lZzh8AFQdtJ0w_tz7FPqa4zUVM727T-qKP3W5NKRdNTIV3aRU3RWjjVxtoPPthm-icnTSuy3TxO6fsbTF_nT2Wy5eHp9n9svSi4kMp0YXGU7BgBZBZOZSkRGPRSvIOjeRGhtG4glXgShnnUQajK2ss5wpRTNnVQbdP8XNLeajXbfbUdW5Do-XagkbDLYiRvP6XxErj-MjAXvTmgI7Rc07U1H1q1y7taoR632Ptkeinx0Z8AxejZBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671395801</pqid></control><display><type>article</type><title>Microporous organic polymers for carbon dioxide capture</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</creator><creatorcontrib>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</creatorcontrib><description>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C1EE01971F</identifier><language>eng</language><subject>Adsorbents ; Affinity ; Carbon dioxide ; Global warming ; Low pressure ; Polymers ; Tuning ; Uptakes</subject><ispartof>Energy & environmental science, 2011-01, Vol.4 (10), p.4239-4245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</citedby><cites>FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dawson, Robert</creatorcontrib><creatorcontrib>Stockel, Ev</creatorcontrib><creatorcontrib>Holst, James R</creatorcontrib><creatorcontrib>Adams, Dave J</creatorcontrib><creatorcontrib>Cooper, Andrew I</creatorcontrib><title>Microporous organic polymers for carbon dioxide capture</title><title>Energy & environmental science</title><description>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</description><subject>Adsorbents</subject><subject>Affinity</subject><subject>Carbon dioxide</subject><subject>Global warming</subject><subject>Low pressure</subject><subject>Polymers</subject><subject>Tuning</subject><subject>Uptakes</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsXP8HeFGF1Jn82yVFKq0LFi56XNJmVlW2zJluw396t1aunmYEfb957jF0i3CIIezfD-RzQalwcsQlqJUuloTr-2yvLT9lZzh8AFQdtJ0w_tz7FPqa4zUVM727T-qKP3W5NKRdNTIV3aRU3RWjjVxtoPPthm-icnTSuy3TxO6fsbTF_nT2Wy5eHp9n9svSi4kMp0YXGU7BgBZBZOZSkRGPRSvIOjeRGhtG4glXgShnnUQajK2ss5wpRTNnVQbdP8XNLeajXbfbUdW5Do-XagkbDLYiRvP6XxErj-MjAXvTmgI7Rc07U1H1q1y7taoR632Ptkeinx0Z8AxejZBE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Dawson, Robert</creator><creator>Stockel, Ev</creator><creator>Holst, James R</creator><creator>Adams, Dave J</creator><creator>Cooper, Andrew I</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110101</creationdate><title>Microporous organic polymers for carbon dioxide capture</title><author>Dawson, Robert ; Stockel, Ev ; Holst, James R ; Adams, Dave J ; Cooper, Andrew I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-41adfced90930e8ba14e53f9194eca184284d03950bd2558ac14d876989225113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorbents</topic><topic>Affinity</topic><topic>Carbon dioxide</topic><topic>Global warming</topic><topic>Low pressure</topic><topic>Polymers</topic><topic>Tuning</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Robert</creatorcontrib><creatorcontrib>Stockel, Ev</creatorcontrib><creatorcontrib>Holst, James R</creatorcontrib><creatorcontrib>Adams, Dave J</creatorcontrib><creatorcontrib>Cooper, Andrew I</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Robert</au><au>Stockel, Ev</au><au>Holst, James R</au><au>Adams, Dave J</au><au>Cooper, Andrew I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microporous organic polymers for carbon dioxide capture</atitle><jtitle>Energy & environmental science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>10</issue><spage>4239</spage><epage>4245</epage><pages>4239-4245</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.</abstract><doi>10.1039/C1EE01971F</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2011-01, Vol.4 (10), p.4239-4245 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_miscellaneous_907182903 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorbents Affinity Carbon dioxide Global warming Low pressure Polymers Tuning Uptakes |
title | Microporous organic polymers for carbon dioxide capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microporous%20organic%20polymers%20for%20carbon%20dioxide%20capture&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Dawson,%20Robert&rft.date=2011-01-01&rft.volume=4&rft.issue=10&rft.spage=4239&rft.epage=4245&rft.pages=4239-4245&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C1EE01971F&rft_dat=%3Cproquest_cross%3E907182903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671395801&rft_id=info:pmid/&rfr_iscdi=true |