Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter
Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sod...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2011-10, Vol.193 (10), p.723-730 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 730 |
---|---|
container_issue | 10 |
container_start_page | 723 |
container_title | Archives of microbiology |
container_volume | 193 |
creator | Sand, Miriam de Berardinis, Veronique Mingote, Ana Santos, Helena Göttig, Stephan Müller, Volker Averhoff, Beate |
description | Members of the genus
Acinetobacter
are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain
Acinetobacter baylyi
copes with different salinities and low water activities.
A. baylyi
tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in
A. baylyi.
The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of
Acinetobacter
species to osmotic stress. |
doi_str_mv | 10.1007/s00203-011-0713-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907177587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893268510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqD_AiQZA9tVaS7k7H27L4BQseVPAWKh-9ZulJj0kGd_z1pu3RBUE8FUmet1L1voQ8YfCCAciXGYCDaICxBiQTze09smGt4PXEv9wnGxDAm0EJcUJOc74BYHwYhofkhLOul0y2G_L9I06FosNdwRLmSEOkFzZEX2aDtvhEDR6mQ3hFg_OxhDHYlcPoqP2K6RcUfqyX80iRZm_n6DAd6PV0WFpR4wsutSSMeTenqnhEHow4Zf_4WM_I5zevP12-a64-vH1_eXHVWNHz0lg2OgOdGhUq74xvhWKcSyNbw9sBJfOq7zwwhKGu0xnHrWpVJyVwJ33fijNyvvbdpfnb3ueityFbP00Y_bzPWlXjpOwG-V-y-sj7oWNQyWd_kTfzPsW6hq7TVWuh7SrEVsimOefkR71LYVtd0Qz0kp5e09M1Pb2kp2-r5umx8d5svfuj-B1XBZ4fAcwWp7H6aUO-49pOChALx1cu16d47dPdhP_-_Sc_erMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912156045</pqid></control><display><type>article</type><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</creator><creatorcontrib>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</creatorcontrib><description>Members of the genus
Acinetobacter
are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain
Acinetobacter baylyi
copes with different salinities and low water activities.
A. baylyi
tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in
A. baylyi.
The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of
Acinetobacter
species to osmotic stress.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-011-0713-x</identifier><identifier>PMID: 21567174</identifier><identifier>CODEN: AMICCW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acinetobacter ; Acinetobacter - genetics ; Acinetobacter - growth & development ; Acinetobacter - metabolism ; Adaptation ; Adaptation, Physiological ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Betaine - metabolism ; Biochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Biology ; Ecology ; Fundamental and applied biological sciences. Psychology ; Genome, Bacterial ; Genomes ; Life Sciences ; Microbial Ecology ; Microbiology ; Miscellaneous ; Original Paper ; Pathogens ; Potassium ; Potassium Chloride - metabolism ; Salinity ; Sodium Chloride - metabolism</subject><ispartof>Archives of microbiology, 2011-10, Vol.193 (10), p.723-730</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</citedby><cites>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-011-0713-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-011-0713-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24573034$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21567174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sand, Miriam</creatorcontrib><creatorcontrib>de Berardinis, Veronique</creatorcontrib><creatorcontrib>Mingote, Ana</creatorcontrib><creatorcontrib>Santos, Helena</creatorcontrib><creatorcontrib>Göttig, Stephan</creatorcontrib><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Averhoff, Beate</creatorcontrib><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Members of the genus
Acinetobacter
are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain
Acinetobacter baylyi
copes with different salinities and low water activities.
A. baylyi
tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in
A. baylyi.
The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of
Acinetobacter
species to osmotic stress.</description><subject>Acinetobacter</subject><subject>Acinetobacter - genetics</subject><subject>Acinetobacter - growth & development</subject><subject>Acinetobacter - metabolism</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Betaine - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>Potassium</subject><subject>Potassium Chloride - metabolism</subject><subject>Salinity</subject><subject>Sodium Chloride - metabolism</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqD_AiQZA9tVaS7k7H27L4BQseVPAWKh-9ZulJj0kGd_z1pu3RBUE8FUmet1L1voQ8YfCCAciXGYCDaICxBiQTze09smGt4PXEv9wnGxDAm0EJcUJOc74BYHwYhofkhLOul0y2G_L9I06FosNdwRLmSEOkFzZEX2aDtvhEDR6mQ3hFg_OxhDHYlcPoqP2K6RcUfqyX80iRZm_n6DAd6PV0WFpR4wsutSSMeTenqnhEHow4Zf_4WM_I5zevP12-a64-vH1_eXHVWNHz0lg2OgOdGhUq74xvhWKcSyNbw9sBJfOq7zwwhKGu0xnHrWpVJyVwJ33fijNyvvbdpfnb3ueityFbP00Y_bzPWlXjpOwG-V-y-sj7oWNQyWd_kTfzPsW6hq7TVWuh7SrEVsimOefkR71LYVtd0Qz0kp5e09M1Pb2kp2-r5umx8d5svfuj-B1XBZ4fAcwWp7H6aUO-49pOChALx1cu16d47dPdhP_-_Sc_erMU</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sand, Miriam</creator><creator>de Berardinis, Veronique</creator><creator>Mingote, Ana</creator><creator>Santos, Helena</creator><creator>Göttig, Stephan</creator><creator>Müller, Volker</creator><creator>Averhoff, Beate</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><author>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acinetobacter</topic><topic>Acinetobacter - genetics</topic><topic>Acinetobacter - growth & development</topic><topic>Acinetobacter - metabolism</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Betaine - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>Potassium</topic><topic>Potassium Chloride - metabolism</topic><topic>Salinity</topic><topic>Sodium Chloride - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, Miriam</creatorcontrib><creatorcontrib>de Berardinis, Veronique</creatorcontrib><creatorcontrib>Mingote, Ana</creatorcontrib><creatorcontrib>Santos, Helena</creatorcontrib><creatorcontrib>Göttig, Stephan</creatorcontrib><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Averhoff, Beate</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sand, Miriam</au><au>de Berardinis, Veronique</au><au>Mingote, Ana</au><au>Santos, Helena</au><au>Göttig, Stephan</au><au>Müller, Volker</au><au>Averhoff, Beate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>193</volume><issue>10</issue><spage>723</spage><epage>730</epage><pages>723-730</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><coden>AMICCW</coden><abstract>Members of the genus
Acinetobacter
are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain
Acinetobacter baylyi
copes with different salinities and low water activities.
A. baylyi
tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in
A. baylyi.
The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of
Acinetobacter
species to osmotic stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21567174</pmid><doi>10.1007/s00203-011-0713-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-8933 |
ispartof | Archives of microbiology, 2011-10, Vol.193 (10), p.723-730 |
issn | 0302-8933 1432-072X |
language | eng |
recordid | cdi_proquest_miscellaneous_907177587 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acinetobacter Acinetobacter - genetics Acinetobacter - growth & development Acinetobacter - metabolism Adaptation Adaptation, Physiological Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Betaine - metabolism Biochemistry Biological and medical sciences Biomedical and Life Sciences Biosynthesis Biotechnology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Biology Ecology Fundamental and applied biological sciences. Psychology Genome, Bacterial Genomes Life Sciences Microbial Ecology Microbiology Miscellaneous Original Paper Pathogens Potassium Potassium Chloride - metabolism Salinity Sodium Chloride - metabolism |
title | Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20adaptation%20in%20Acinetobacter%20baylyi:%20identification%20and%20characterization%20of%20a%20secondary%20glycine%20betaine%20transporter&rft.jtitle=Archives%20of%20microbiology&rft.au=Sand,%20Miriam&rft.date=2011-10-01&rft.volume=193&rft.issue=10&rft.spage=723&rft.epage=730&rft.pages=723-730&rft.issn=0302-8933&rft.eissn=1432-072X&rft.coden=AMICCW&rft_id=info:doi/10.1007/s00203-011-0713-x&rft_dat=%3Cproquest_cross%3E893268510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912156045&rft_id=info:pmid/21567174&rfr_iscdi=true |