Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter

Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2011-10, Vol.193 (10), p.723-730
Hauptverfasser: Sand, Miriam, de Berardinis, Veronique, Mingote, Ana, Santos, Helena, Göttig, Stephan, Müller, Volker, Averhoff, Beate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 10
container_start_page 723
container_title Archives of microbiology
container_volume 193
creator Sand, Miriam
de Berardinis, Veronique
Mingote, Ana
Santos, Helena
Göttig, Stephan
Müller, Volker
Averhoff, Beate
description Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.
doi_str_mv 10.1007/s00203-011-0713-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907177587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893268510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqD_AiQZA9tVaS7k7H27L4BQseVPAWKh-9ZulJj0kGd_z1pu3RBUE8FUmet1L1voQ8YfCCAciXGYCDaICxBiQTze09smGt4PXEv9wnGxDAm0EJcUJOc74BYHwYhofkhLOul0y2G_L9I06FosNdwRLmSEOkFzZEX2aDtvhEDR6mQ3hFg_OxhDHYlcPoqP2K6RcUfqyX80iRZm_n6DAd6PV0WFpR4wsutSSMeTenqnhEHow4Zf_4WM_I5zevP12-a64-vH1_eXHVWNHz0lg2OgOdGhUq74xvhWKcSyNbw9sBJfOq7zwwhKGu0xnHrWpVJyVwJ33fijNyvvbdpfnb3ueityFbP00Y_bzPWlXjpOwG-V-y-sj7oWNQyWd_kTfzPsW6hq7TVWuh7SrEVsimOefkR71LYVtd0Qz0kp5e09M1Pb2kp2-r5umx8d5svfuj-B1XBZ4fAcwWp7H6aUO-49pOChALx1cu16d47dPdhP_-_Sc_erMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912156045</pqid></control><display><type>article</type><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</creator><creatorcontrib>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</creatorcontrib><description>Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-011-0713-x</identifier><identifier>PMID: 21567174</identifier><identifier>CODEN: AMICCW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acinetobacter ; Acinetobacter - genetics ; Acinetobacter - growth &amp; development ; Acinetobacter - metabolism ; Adaptation ; Adaptation, Physiological ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Betaine - metabolism ; Biochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Biology ; Ecology ; Fundamental and applied biological sciences. Psychology ; Genome, Bacterial ; Genomes ; Life Sciences ; Microbial Ecology ; Microbiology ; Miscellaneous ; Original Paper ; Pathogens ; Potassium ; Potassium Chloride - metabolism ; Salinity ; Sodium Chloride - metabolism</subject><ispartof>Archives of microbiology, 2011-10, Vol.193 (10), p.723-730</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</citedby><cites>FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-011-0713-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-011-0713-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24573034$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21567174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sand, Miriam</creatorcontrib><creatorcontrib>de Berardinis, Veronique</creatorcontrib><creatorcontrib>Mingote, Ana</creatorcontrib><creatorcontrib>Santos, Helena</creatorcontrib><creatorcontrib>Göttig, Stephan</creatorcontrib><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Averhoff, Beate</creatorcontrib><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.</description><subject>Acinetobacter</subject><subject>Acinetobacter - genetics</subject><subject>Acinetobacter - growth &amp; development</subject><subject>Acinetobacter - metabolism</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Betaine - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>Potassium</subject><subject>Potassium Chloride - metabolism</subject><subject>Salinity</subject><subject>Sodium Chloride - metabolism</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqD_AiQZA9tVaS7k7H27L4BQseVPAWKh-9ZulJj0kGd_z1pu3RBUE8FUmet1L1voQ8YfCCAciXGYCDaICxBiQTze09smGt4PXEv9wnGxDAm0EJcUJOc74BYHwYhofkhLOul0y2G_L9I06FosNdwRLmSEOkFzZEX2aDtvhEDR6mQ3hFg_OxhDHYlcPoqP2K6RcUfqyX80iRZm_n6DAd6PV0WFpR4wsutSSMeTenqnhEHow4Zf_4WM_I5zevP12-a64-vH1_eXHVWNHz0lg2OgOdGhUq74xvhWKcSyNbw9sBJfOq7zwwhKGu0xnHrWpVJyVwJ33fijNyvvbdpfnb3ueityFbP00Y_bzPWlXjpOwG-V-y-sj7oWNQyWd_kTfzPsW6hq7TVWuh7SrEVsimOefkR71LYVtd0Qz0kp5e09M1Pb2kp2-r5umx8d5svfuj-B1XBZ4fAcwWp7H6aUO-49pOChALx1cu16d47dPdhP_-_Sc_erMU</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sand, Miriam</creator><creator>de Berardinis, Veronique</creator><creator>Mingote, Ana</creator><creator>Santos, Helena</creator><creator>Göttig, Stephan</creator><creator>Müller, Volker</creator><creator>Averhoff, Beate</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</title><author>Sand, Miriam ; de Berardinis, Veronique ; Mingote, Ana ; Santos, Helena ; Göttig, Stephan ; Müller, Volker ; Averhoff, Beate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c1fdb059f9a9edbe4391227b74b248a71e965e01a081745bd2c94957702d7e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acinetobacter</topic><topic>Acinetobacter - genetics</topic><topic>Acinetobacter - growth &amp; development</topic><topic>Acinetobacter - metabolism</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Betaine - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>Potassium</topic><topic>Potassium Chloride - metabolism</topic><topic>Salinity</topic><topic>Sodium Chloride - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, Miriam</creatorcontrib><creatorcontrib>de Berardinis, Veronique</creatorcontrib><creatorcontrib>Mingote, Ana</creatorcontrib><creatorcontrib>Santos, Helena</creatorcontrib><creatorcontrib>Göttig, Stephan</creatorcontrib><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Averhoff, Beate</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sand, Miriam</au><au>de Berardinis, Veronique</au><au>Mingote, Ana</au><au>Santos, Helena</au><au>Göttig, Stephan</au><au>Müller, Volker</au><au>Averhoff, Beate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>193</volume><issue>10</issue><spage>723</spage><epage>730</epage><pages>723-730</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><coden>AMICCW</coden><abstract>Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21567174</pmid><doi>10.1007/s00203-011-0713-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2011-10, Vol.193 (10), p.723-730
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_907177587
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acinetobacter
Acinetobacter - genetics
Acinetobacter - growth & development
Acinetobacter - metabolism
Adaptation
Adaptation, Physiological
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Betaine - metabolism
Biochemistry
Biological and medical sciences
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Biology
Ecology
Fundamental and applied biological sciences. Psychology
Genome, Bacterial
Genomes
Life Sciences
Microbial Ecology
Microbiology
Miscellaneous
Original Paper
Pathogens
Potassium
Potassium Chloride - metabolism
Salinity
Sodium Chloride - metabolism
title Salt adaptation in Acinetobacter baylyi: identification and characterization of a secondary glycine betaine transporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20adaptation%20in%20Acinetobacter%20baylyi:%20identification%20and%20characterization%20of%20a%20secondary%20glycine%20betaine%20transporter&rft.jtitle=Archives%20of%20microbiology&rft.au=Sand,%20Miriam&rft.date=2011-10-01&rft.volume=193&rft.issue=10&rft.spage=723&rft.epage=730&rft.pages=723-730&rft.issn=0302-8933&rft.eissn=1432-072X&rft.coden=AMICCW&rft_id=info:doi/10.1007/s00203-011-0713-x&rft_dat=%3Cproquest_cross%3E893268510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912156045&rft_id=info:pmid/21567174&rfr_iscdi=true