The Sound of Silence: Ionic Mechanisms Encoding Sound Termination

Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2011-09, Vol.71 (5), p.911-925
Hauptverfasser: Kopp-Scheinpflug, Cornelia, Tozer, Adam J.B., Robinson, Susan W., Tempel, Bruce L., Hennig, Matthias H., Forsythe, Ian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 5
container_start_page 911
container_title Neuron (Cambridge, Mass.)
container_volume 71
creator Kopp-Scheinpflug, Cornelia
Tozer, Adam J.B.
Robinson, Susan W.
Tempel, Bruce L.
Hennig, Matthias H.
Forsythe, Ian D.
description Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (ECl), combined with a large hyperpolarization-activated nonspecific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). On activation by the IPSP, IH potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy. ► Offset responses encode the termination of a sensory synaptic stimulus ► SPN neurons have an intrinsic ionic mechanism to generate offset firing from IPSPs ► KCC2 is required to maintain low internal chloride which results in large IPSPs ► Large IPSPs trigger IH, accelerating tau, and mediate fast offset firing
doi_str_mv 10.1016/j.neuron.2011.06.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907175261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311005587</els_id><sourcerecordid>3388955201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-35cb1dfcd6c3c0835820921f502d6a5be8739224b9c9370a120a7304c60753243</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwDxCKxMCU8J4dOzEDUoX4kooYKLOVOg64auxiJ0j8e1K1MDAwveXce58OIacIGQKKy2XmTB-8yyggZiAyoOUeGSPIIs1Ryn0yhlKKVNCCjchRjEsAzLnEQzKiKIFBycZkOn83yYvvXZ34JnmxK-O0uUoevbM6eTL6vXI2tjG5ddrX1r3t2LkJrXVVZ707JgdNtYrmZHcn5PXudn7zkM6e7x9vprNUc8a6lHG9wLrRtdBMD9O8pCApNhxoLSq-MGXBJKX5QmrJCqiQQlUwyLWAgjOaswm52Paug__oTexUa6M2q1XljO-jklBgwanAgTz_Qy59H9zwnEKeS8nLUtKByreUDj7GYBq1DratwpdCUBvDaqm2htXGsAKhBsND7GxX3i9aU_-GfpQOwPUWMIOMT2uCitpurNY2GN2p2tv_F74BoaqLew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549958892</pqid></control><display><type>article</type><title>The Sound of Silence: Ionic Mechanisms Encoding Sound Termination</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Cell Press Free Archives(OpenAccess)</source><creator>Kopp-Scheinpflug, Cornelia ; Tozer, Adam J.B. ; Robinson, Susan W. ; Tempel, Bruce L. ; Hennig, Matthias H. ; Forsythe, Ian D.</creator><creatorcontrib>Kopp-Scheinpflug, Cornelia ; Tozer, Adam J.B. ; Robinson, Susan W. ; Tempel, Bruce L. ; Hennig, Matthias H. ; Forsythe, Ian D.</creatorcontrib><description>Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (ECl), combined with a large hyperpolarization-activated nonspecific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). On activation by the IPSP, IH potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy. ► Offset responses encode the termination of a sensory synaptic stimulus ► SPN neurons have an intrinsic ionic mechanism to generate offset firing from IPSPs ► KCC2 is required to maintain low internal chloride which results in large IPSPs ► Large IPSPs trigger IH, accelerating tau, and mediate fast offset firing</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.06.028</identifier><identifier>PMID: 21903083</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation - methods ; Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Animals, Newborn ; Auditory Pathways - physiology ; Biophysics ; Calcium - metabolism ; Calcium Channel Blockers - pharmacology ; Calcium Channels, T-Type - metabolism ; Chlorides - metabolism ; Computer Simulation ; Cyclic Nucleotide-Gated Cation Channels - deficiency ; Electric Stimulation ; Experiments ; Functional Laterality ; Furosemide - pharmacology ; Gene Expression Regulation - genetics ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels ; In Vitro Techniques ; Ion Channel Gating - genetics ; Ion Channel Gating - physiology ; K Cl- Cotransporters ; Mammals ; Mibefradil - pharmacology ; Mice ; Mice, Inbred CBA ; Mice, Knockout ; Models, Neurological ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Olivary Nucleus - cytology ; Patch-Clamp Techniques - methods ; Potassium ; Potassium Channels - deficiency ; Psychoacoustics ; Pyrimidines - pharmacology ; Reaction Time - drug effects ; Reaction Time - genetics ; Reaction Time - physiology ; Sodium Potassium Chloride Symporter Inhibitors - pharmacology ; Sound ; Statistical methods ; Stilbamidines - metabolism ; Symporters - metabolism ; Synaptic Potentials - drug effects ; Synaptic Potentials - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.911-925</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 8, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-35cb1dfcd6c3c0835820921f502d6a5be8739224b9c9370a120a7304c60753243</citedby><cites>FETCH-LOGICAL-c533t-35cb1dfcd6c3c0835820921f502d6a5be8739224b9c9370a120a7304c60753243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2011.06.028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21903083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Tozer, Adam J.B.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tempel, Bruce L.</creatorcontrib><creatorcontrib>Hennig, Matthias H.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><title>The Sound of Silence: Ionic Mechanisms Encoding Sound Termination</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (ECl), combined with a large hyperpolarization-activated nonspecific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). On activation by the IPSP, IH potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy. ► Offset responses encode the termination of a sensory synaptic stimulus ► SPN neurons have an intrinsic ionic mechanism to generate offset firing from IPSPs ► KCC2 is required to maintain low internal chloride which results in large IPSPs ► Large IPSPs trigger IH, accelerating tau, and mediate fast offset firing</description><subject>Acoustic Stimulation - methods</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Auditory Pathways - physiology</subject><subject>Biophysics</subject><subject>Calcium - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Chlorides - metabolism</subject><subject>Computer Simulation</subject><subject>Cyclic Nucleotide-Gated Cation Channels - deficiency</subject><subject>Electric Stimulation</subject><subject>Experiments</subject><subject>Functional Laterality</subject><subject>Furosemide - pharmacology</subject><subject>Gene Expression Regulation - genetics</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</subject><subject>In Vitro Techniques</subject><subject>Ion Channel Gating - genetics</subject><subject>Ion Channel Gating - physiology</subject><subject>K Cl- Cotransporters</subject><subject>Mammals</subject><subject>Mibefradil - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred CBA</subject><subject>Mice, Knockout</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Olivary Nucleus - cytology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Potassium</subject><subject>Potassium Channels - deficiency</subject><subject>Psychoacoustics</subject><subject>Pyrimidines - pharmacology</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - genetics</subject><subject>Reaction Time - physiology</subject><subject>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</subject><subject>Sound</subject><subject>Statistical methods</subject><subject>Stilbamidines - metabolism</subject><subject>Symporters - metabolism</subject><subject>Synaptic Potentials - drug effects</subject><subject>Synaptic Potentials - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqXwDxCKxMCU8J4dOzEDUoX4kooYKLOVOg64auxiJ0j8e1K1MDAwveXce58OIacIGQKKy2XmTB-8yyggZiAyoOUeGSPIIs1Ryn0yhlKKVNCCjchRjEsAzLnEQzKiKIFBycZkOn83yYvvXZ34JnmxK-O0uUoevbM6eTL6vXI2tjG5ddrX1r3t2LkJrXVVZ707JgdNtYrmZHcn5PXudn7zkM6e7x9vprNUc8a6lHG9wLrRtdBMD9O8pCApNhxoLSq-MGXBJKX5QmrJCqiQQlUwyLWAgjOaswm52Paug__oTexUa6M2q1XljO-jklBgwanAgTz_Qy59H9zwnEKeS8nLUtKByreUDj7GYBq1DratwpdCUBvDaqm2htXGsAKhBsND7GxX3i9aU_-GfpQOwPUWMIOMT2uCitpurNY2GN2p2tv_F74BoaqLew</recordid><startdate>20110908</startdate><enddate>20110908</enddate><creator>Kopp-Scheinpflug, Cornelia</creator><creator>Tozer, Adam J.B.</creator><creator>Robinson, Susan W.</creator><creator>Tempel, Bruce L.</creator><creator>Hennig, Matthias H.</creator><creator>Forsythe, Ian D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110908</creationdate><title>The Sound of Silence: Ionic Mechanisms Encoding Sound Termination</title><author>Kopp-Scheinpflug, Cornelia ; Tozer, Adam J.B. ; Robinson, Susan W. ; Tempel, Bruce L. ; Hennig, Matthias H. ; Forsythe, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-35cb1dfcd6c3c0835820921f502d6a5be8739224b9c9370a120a7304c60753243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Auditory Pathways - physiology</topic><topic>Biophysics</topic><topic>Calcium - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Chlorides - metabolism</topic><topic>Computer Simulation</topic><topic>Cyclic Nucleotide-Gated Cation Channels - deficiency</topic><topic>Electric Stimulation</topic><topic>Experiments</topic><topic>Functional Laterality</topic><topic>Furosemide - pharmacology</topic><topic>Gene Expression Regulation - genetics</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</topic><topic>In Vitro Techniques</topic><topic>Ion Channel Gating - genetics</topic><topic>Ion Channel Gating - physiology</topic><topic>K Cl- Cotransporters</topic><topic>Mammals</topic><topic>Mibefradil - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred CBA</topic><topic>Mice, Knockout</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Olivary Nucleus - cytology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Potassium</topic><topic>Potassium Channels - deficiency</topic><topic>Psychoacoustics</topic><topic>Pyrimidines - pharmacology</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - genetics</topic><topic>Reaction Time - physiology</topic><topic>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</topic><topic>Sound</topic><topic>Statistical methods</topic><topic>Stilbamidines - metabolism</topic><topic>Symporters - metabolism</topic><topic>Synaptic Potentials - drug effects</topic><topic>Synaptic Potentials - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopp-Scheinpflug, Cornelia</creatorcontrib><creatorcontrib>Tozer, Adam J.B.</creatorcontrib><creatorcontrib>Robinson, Susan W.</creatorcontrib><creatorcontrib>Tempel, Bruce L.</creatorcontrib><creatorcontrib>Hennig, Matthias H.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopp-Scheinpflug, Cornelia</au><au>Tozer, Adam J.B.</au><au>Robinson, Susan W.</au><au>Tempel, Bruce L.</au><au>Hennig, Matthias H.</au><au>Forsythe, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Sound of Silence: Ionic Mechanisms Encoding Sound Termination</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-09-08</date><risdate>2011</risdate><volume>71</volume><issue>5</issue><spage>911</spage><epage>925</epage><pages>911-925</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (ECl), combined with a large hyperpolarization-activated nonspecific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). On activation by the IPSP, IH potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy. ► Offset responses encode the termination of a sensory synaptic stimulus ► SPN neurons have an intrinsic ionic mechanism to generate offset firing from IPSPs ► KCC2 is required to maintain low internal chloride which results in large IPSPs ► Large IPSPs trigger IH, accelerating tau, and mediate fast offset firing</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21903083</pmid><doi>10.1016/j.neuron.2011.06.028</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2011-09, Vol.71 (5), p.911-925
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_907175261
source MEDLINE; Elsevier ScienceDirect Journals Complete; Free E-Journal (出版社公開部分のみ); Cell Press Free Archives(OpenAccess)
subjects Acoustic Stimulation - methods
Action Potentials - drug effects
Action Potentials - physiology
Animals
Animals, Newborn
Auditory Pathways - physiology
Biophysics
Calcium - metabolism
Calcium Channel Blockers - pharmacology
Calcium Channels, T-Type - metabolism
Chlorides - metabolism
Computer Simulation
Cyclic Nucleotide-Gated Cation Channels - deficiency
Electric Stimulation
Experiments
Functional Laterality
Furosemide - pharmacology
Gene Expression Regulation - genetics
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
In Vitro Techniques
Ion Channel Gating - genetics
Ion Channel Gating - physiology
K Cl- Cotransporters
Mammals
Mibefradil - pharmacology
Mice
Mice, Inbred CBA
Mice, Knockout
Models, Neurological
Neurons
Neurons - drug effects
Neurons - physiology
Olivary Nucleus - cytology
Patch-Clamp Techniques - methods
Potassium
Potassium Channels - deficiency
Psychoacoustics
Pyrimidines - pharmacology
Reaction Time - drug effects
Reaction Time - genetics
Reaction Time - physiology
Sodium Potassium Chloride Symporter Inhibitors - pharmacology
Sound
Statistical methods
Stilbamidines - metabolism
Symporters - metabolism
Synaptic Potentials - drug effects
Synaptic Potentials - physiology
title The Sound of Silence: Ionic Mechanisms Encoding Sound Termination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Sound%20of%20Silence:%20Ionic%20Mechanisms%20Encoding%20Sound%20Termination&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Kopp-Scheinpflug,%20Cornelia&rft.date=2011-09-08&rft.volume=71&rft.issue=5&rft.spage=911&rft.epage=925&rft.pages=911-925&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.06.028&rft_dat=%3Cproquest_cross%3E3388955201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549958892&rft_id=info:pmid/21903083&rft_els_id=S0896627311005587&rfr_iscdi=true