Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing
Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which pref...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2011-09, Vol.192, p.773-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | |
container_start_page | 773 |
container_title | Neuroscience |
container_volume | 192 |
creator | Ding, Q Ying, Z Gómez-Pinilla, F |
description | Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function. |
doi_str_mv | 10.1016/j.neuroscience.2011.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907169583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452211007160</els_id><sourcerecordid>907169583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</originalsourceid><addsrcrecordid>eNqNkkmP1DAQhSMEYpqBv4AiJMQpobw7HJBGw7BII3EAzpZjVxg32bCTEf3vcehmEafxxZev3iu9V0XxjEBNgMiX-3rENU7JBRwd1hQIqUHWwOi9Yke0YpUSnN8vdsBAVlxQelY8SmkP-QnOHhZnlCghGw27Aq9-YHQhYRnGrl83wVTehHmenB1m25dzb9MSXFgOZXsoh8mvvV3C-LVsow1j5TGGW_Tlr42WOM03wZWddcsUyzlOWS1l-HHxoLN9wien_7z48vbq8-X76vrjuw-XF9eVkyCWinkiGkVbUNyBpl4pS0HppmHMSiKRC0I0yZTVLaLrOgUenPVaco5aM3ZevDjqZuvvK6bFDCE57Hs74rQm04AishF3ILVWApjiJJOvjqTLkaeInZljGGw8GAJm68Pszb99mK0PA9LkPvLw05PN2g7o_4z-LiADz0-ATc72XbRjbuMvx5Umgm77vjlymOO7DRjNyc6HiG4xfgp32-f1fzKuD2PIzt_wgGk_rXHMBRliEjVgPm0XtB0QIbBFB-wnB_XGMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887503741</pqid></control><display><type>article</type><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</creator><creatorcontrib>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</creatorcontrib><description>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2011.06.032</identifier><identifier>PMID: 21756980</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Blotting, Western ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - metabolism ; Fundamental and applied biological sciences. Psychology ; GAP-43 protein ; Hippocampus ; Hippocampus - metabolism ; Information processing ; Male ; Nervous system ; Neurology ; Neuronal Plasticity - physiology ; Physical Conditioning, Animal - physiology ; Physical training ; plasminogen ; Plasticity (hippocampal) ; rat ; Rats ; Rats, Sprague-Dawley ; Serine proteinase ; Signal Transduction - physiology ; signaling ; synaptic plasticity ; t-Plasminogen activator ; Therapeutic applications ; Tissue Plasminogen Activator - metabolism ; TrkB receptors ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2011-09, Vol.192, p.773-780</ispartof><rights>IBRO</rights><rights>2011 IBRO</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</citedby><cites>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2011.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24781523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21756980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Q</creatorcontrib><creatorcontrib>Ying, Z</creatorcontrib><creatorcontrib>Gómez-Pinilla, F</creatorcontrib><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GAP-43 protein</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Information processing</subject><subject>Male</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Physical training</subject><subject>plasminogen</subject><subject>Plasticity (hippocampal)</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Serine proteinase</subject><subject>Signal Transduction - physiology</subject><subject>signaling</subject><subject>synaptic plasticity</subject><subject>t-Plasminogen activator</subject><subject>Therapeutic applications</subject><subject>Tissue Plasminogen Activator - metabolism</subject><subject>TrkB receptors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkmP1DAQhSMEYpqBv4AiJMQpobw7HJBGw7BII3EAzpZjVxg32bCTEf3vcehmEafxxZev3iu9V0XxjEBNgMiX-3rENU7JBRwd1hQIqUHWwOi9Yke0YpUSnN8vdsBAVlxQelY8SmkP-QnOHhZnlCghGw27Aq9-YHQhYRnGrl83wVTehHmenB1m25dzb9MSXFgOZXsoh8mvvV3C-LVsow1j5TGGW_Tlr42WOM03wZWddcsUyzlOWS1l-HHxoLN9wien_7z48vbq8-X76vrjuw-XF9eVkyCWinkiGkVbUNyBpl4pS0HppmHMSiKRC0I0yZTVLaLrOgUenPVaco5aM3ZevDjqZuvvK6bFDCE57Hs74rQm04AishF3ILVWApjiJJOvjqTLkaeInZljGGw8GAJm68Pszb99mK0PA9LkPvLw05PN2g7o_4z-LiADz0-ATc72XbRjbuMvx5Umgm77vjlymOO7DRjNyc6HiG4xfgp32-f1fzKuD2PIzt_wgGk_rXHMBRliEjVgPm0XtB0QIbBFB-wnB_XGMg</recordid><startdate>20110929</startdate><enddate>20110929</enddate><creator>Ding, Q</creator><creator>Ying, Z</creator><creator>Gómez-Pinilla, F</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20110929</creationdate><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><author>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GAP-43 protein</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Information processing</topic><topic>Male</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Physical training</topic><topic>plasminogen</topic><topic>Plasticity (hippocampal)</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Serine proteinase</topic><topic>Signal Transduction - physiology</topic><topic>signaling</topic><topic>synaptic plasticity</topic><topic>t-Plasminogen activator</topic><topic>Therapeutic applications</topic><topic>Tissue Plasminogen Activator - metabolism</topic><topic>TrkB receptors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Q</creatorcontrib><creatorcontrib>Ying, Z</creatorcontrib><creatorcontrib>Gómez-Pinilla, F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Q</au><au>Ying, Z</au><au>Gómez-Pinilla, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2011-09-29</date><risdate>2011</risdate><volume>192</volume><spage>773</spage><epage>780</epage><pages>773-780</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>21756980</pmid><doi>10.1016/j.neuroscience.2011.06.032</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2011-09, Vol.192, p.773-780 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_proquest_miscellaneous_907169583 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Biological and medical sciences Blotting, Western Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - metabolism Fundamental and applied biological sciences. Psychology GAP-43 protein Hippocampus Hippocampus - metabolism Information processing Male Nervous system Neurology Neuronal Plasticity - physiology Physical Conditioning, Animal - physiology Physical training plasminogen Plasticity (hippocampal) rat Rats Rats, Sprague-Dawley Serine proteinase Signal Transduction - physiology signaling synaptic plasticity t-Plasminogen activator Therapeutic applications Tissue Plasminogen Activator - metabolism TrkB receptors Vertebrates: nervous system and sense organs |
title | Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exercise%20influences%20hippocampal%20plasticity%20by%20modulating%20brain-derived%20neurotrophic%20factor%20processing&rft.jtitle=Neuroscience&rft.au=Ding,%20Q&rft.date=2011-09-29&rft.volume=192&rft.spage=773&rft.epage=780&rft.pages=773-780&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2011.06.032&rft_dat=%3Cproquest_cross%3E907169583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887503741&rft_id=info:pmid/21756980&rft_els_id=S0306452211007160&rfr_iscdi=true |