Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing

Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which pref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2011-09, Vol.192, p.773-780
Hauptverfasser: Ding, Q, Ying, Z, Gómez-Pinilla, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue
container_start_page 773
container_title Neuroscience
container_volume 192
creator Ding, Q
Ying, Z
Gómez-Pinilla, F
description Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.
doi_str_mv 10.1016/j.neuroscience.2011.06.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907169583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452211007160</els_id><sourcerecordid>907169583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</originalsourceid><addsrcrecordid>eNqNkkmP1DAQhSMEYpqBv4AiJMQpobw7HJBGw7BII3EAzpZjVxg32bCTEf3vcehmEafxxZev3iu9V0XxjEBNgMiX-3rENU7JBRwd1hQIqUHWwOi9Yke0YpUSnN8vdsBAVlxQelY8SmkP-QnOHhZnlCghGw27Aq9-YHQhYRnGrl83wVTehHmenB1m25dzb9MSXFgOZXsoh8mvvV3C-LVsow1j5TGGW_Tlr42WOM03wZWddcsUyzlOWS1l-HHxoLN9wien_7z48vbq8-X76vrjuw-XF9eVkyCWinkiGkVbUNyBpl4pS0HppmHMSiKRC0I0yZTVLaLrOgUenPVaco5aM3ZevDjqZuvvK6bFDCE57Hs74rQm04AishF3ILVWApjiJJOvjqTLkaeInZljGGw8GAJm68Pszb99mK0PA9LkPvLw05PN2g7o_4z-LiADz0-ATc72XbRjbuMvx5Umgm77vjlymOO7DRjNyc6HiG4xfgp32-f1fzKuD2PIzt_wgGk_rXHMBRliEjVgPm0XtB0QIbBFB-wnB_XGMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887503741</pqid></control><display><type>article</type><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</creator><creatorcontrib>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</creatorcontrib><description>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2011.06.032</identifier><identifier>PMID: 21756980</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Blotting, Western ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - metabolism ; Fundamental and applied biological sciences. Psychology ; GAP-43 protein ; Hippocampus ; Hippocampus - metabolism ; Information processing ; Male ; Nervous system ; Neurology ; Neuronal Plasticity - physiology ; Physical Conditioning, Animal - physiology ; Physical training ; plasminogen ; Plasticity (hippocampal) ; rat ; Rats ; Rats, Sprague-Dawley ; Serine proteinase ; Signal Transduction - physiology ; signaling ; synaptic plasticity ; t-Plasminogen activator ; Therapeutic applications ; Tissue Plasminogen Activator - metabolism ; TrkB receptors ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2011-09, Vol.192, p.773-780</ispartof><rights>IBRO</rights><rights>2011 IBRO</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</citedby><cites>FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuroscience.2011.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24781523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21756980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Q</creatorcontrib><creatorcontrib>Ying, Z</creatorcontrib><creatorcontrib>Gómez-Pinilla, F</creatorcontrib><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GAP-43 protein</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Information processing</subject><subject>Male</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Physical training</subject><subject>plasminogen</subject><subject>Plasticity (hippocampal)</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Serine proteinase</subject><subject>Signal Transduction - physiology</subject><subject>signaling</subject><subject>synaptic plasticity</subject><subject>t-Plasminogen activator</subject><subject>Therapeutic applications</subject><subject>Tissue Plasminogen Activator - metabolism</subject><subject>TrkB receptors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkmP1DAQhSMEYpqBv4AiJMQpobw7HJBGw7BII3EAzpZjVxg32bCTEf3vcehmEafxxZev3iu9V0XxjEBNgMiX-3rENU7JBRwd1hQIqUHWwOi9Yke0YpUSnN8vdsBAVlxQelY8SmkP-QnOHhZnlCghGw27Aq9-YHQhYRnGrl83wVTehHmenB1m25dzb9MSXFgOZXsoh8mvvV3C-LVsow1j5TGGW_Tlr42WOM03wZWddcsUyzlOWS1l-HHxoLN9wien_7z48vbq8-X76vrjuw-XF9eVkyCWinkiGkVbUNyBpl4pS0HppmHMSiKRC0I0yZTVLaLrOgUenPVaco5aM3ZevDjqZuvvK6bFDCE57Hs74rQm04AishF3ILVWApjiJJOvjqTLkaeInZljGGw8GAJm68Pszb99mK0PA9LkPvLw05PN2g7o_4z-LiADz0-ATc72XbRjbuMvx5Umgm77vjlymOO7DRjNyc6HiG4xfgp32-f1fzKuD2PIzt_wgGk_rXHMBRliEjVgPm0XtB0QIbBFB-wnB_XGMg</recordid><startdate>20110929</startdate><enddate>20110929</enddate><creator>Ding, Q</creator><creator>Ying, Z</creator><creator>Gómez-Pinilla, F</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20110929</creationdate><title>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</title><author>Ding, Q ; Ying, Z ; Gómez-Pinilla, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-3d15972b074c082d77a20789933a616e4511813d1a8beecff70d0cad8644e8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GAP-43 protein</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Information processing</topic><topic>Male</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Physical training</topic><topic>plasminogen</topic><topic>Plasticity (hippocampal)</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Serine proteinase</topic><topic>Signal Transduction - physiology</topic><topic>signaling</topic><topic>synaptic plasticity</topic><topic>t-Plasminogen activator</topic><topic>Therapeutic applications</topic><topic>Tissue Plasminogen Activator - metabolism</topic><topic>TrkB receptors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Q</creatorcontrib><creatorcontrib>Ying, Z</creatorcontrib><creatorcontrib>Gómez-Pinilla, F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Q</au><au>Ying, Z</au><au>Gómez-Pinilla, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2011-09-29</date><risdate>2011</risdate><volume>192</volume><spage>773</spage><epage>780</epage><pages>773-780</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Abstract Exercise has been shown to impact brain plasticity and function by involving the action of brain-derived neurotrophic factor (BDNF); however, mechanisms involved are poorly understood. Two types of BDNF coexist in the brain, the precursor (proBDNF) and its mature product (mBDNF), which preferentially bind specific receptors and exert distinct functions. It is crucial to understand how exercise affects crucial steps in the BDNF processing and signaling to evaluate therapeutic applications. We found that 7 days of voluntary exercise increased both pro and mature BDNF in the rat hippocampus. Exercise also increased the activity of tissue-type plasminogen activator (tPA), a serine proteinase shown to facilitate proBDNF cleavage into mBDNF. The blockade of tPA activity reduced the exercise effects on proBDNF and mBDNF. The tPA blocking also inhibited the activation of TrkB receptor, and the TrkB signaling downstream effectors phospho-ERK, phospho-Akt, and phospho-CaMKII. The blocking of tPA also counteracted the effects of exercise on the plasticity markers phospho-synapsin I and growth-associated protein 43 (GAP-43). These results indicate that the effects of exercise on hippocampal plasticity are dependent on BDNF processing and subsequent TrkB signaling, with important implications for neuronal function.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>21756980</pmid><doi>10.1016/j.neuroscience.2011.06.032</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2011-09, Vol.192, p.773-780
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_907169583
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Biological and medical sciences
Blotting, Western
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - metabolism
Fundamental and applied biological sciences. Psychology
GAP-43 protein
Hippocampus
Hippocampus - metabolism
Information processing
Male
Nervous system
Neurology
Neuronal Plasticity - physiology
Physical Conditioning, Animal - physiology
Physical training
plasminogen
Plasticity (hippocampal)
rat
Rats
Rats, Sprague-Dawley
Serine proteinase
Signal Transduction - physiology
signaling
synaptic plasticity
t-Plasminogen activator
Therapeutic applications
Tissue Plasminogen Activator - metabolism
TrkB receptors
Vertebrates: nervous system and sense organs
title Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exercise%20influences%20hippocampal%20plasticity%20by%20modulating%20brain-derived%20neurotrophic%20factor%20processing&rft.jtitle=Neuroscience&rft.au=Ding,%20Q&rft.date=2011-09-29&rft.volume=192&rft.spage=773&rft.epage=780&rft.pages=773-780&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2011.06.032&rft_dat=%3Cproquest_cross%3E907169583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887503741&rft_id=info:pmid/21756980&rft_els_id=S0306452211007160&rfr_iscdi=true