Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea

Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate" assimilation community in the South China S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2008-11, Vol.56 (4), p.751-764
Hauptverfasser: Cai, Haiyuan, Jiao, Nianzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 4
container_start_page 751
container_title Microbial ecology
container_volume 56
creator Cai, Haiyuan
Jiao, Nianzhi
description Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate" assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.
doi_str_mv 10.1007/s00248-008-9394-7
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907169421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40343420</jstor_id><sourcerecordid>40343420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e14126a2bc37e1b0b0f2090048424a676de95ba488539a75dcabd2fed55eb1f23</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCD-AAspCAU2D8kdg-rpZSkKpyKJW4WU4yYb3KOq3tIPXf41VWrcShpznMM-_M6CHkDYPPDEB9SQBc6gpAV0YYWalnZMWk4BXT8vdzsgIwdSUark_IaUo7AKYaLl6Sk9LXjAm9Ijdf_V-Myed76kJP1-0cehc6pNNAr3yOLiNdp-T3fnTZT4FeYMBEfaB5i_RqiqXEQK-nOW_pZuuDo9foXpEXgxsTvj7WM3Lz7fzX5nt1-fPix2Z9WXWyFrlCJhlvHG87oZC10MLAwQBILbl0jWp6NHXrpNa1ME7Vfefang_Y1zW2bODijHxacm_jdDdjynbvU4fj6AJOc7IGFGuM5KyQH58kG9PIWgpZwPf_gbtpjqF8YTkDyTRXh71sgbo4pRRxsLfR7128twzsQY1d1Niixh7UWFVm3h2D53aP_ePE0UUBPhwBlzo3DrF48OmB46CM5hIKxxculVb4g_Hxwqe2v12GdilP8SG0xJWnOYh_Gq2uBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210418272</pqid></control><display><type>article</type><title>Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cai, Haiyuan ; Jiao, Nianzhi</creator><creatorcontrib>Cai, Haiyuan ; Jiao, Nianzhi</creatorcontrib><description>Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate" assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-008-9394-7</identifier><identifier>PMID: 18481138</identifier><identifier>CODEN: MCBEBU</identifier><language>eng</language><publisher>New York: Springer Science + Business Media, Inc</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biodiversity ; Biological and medical sciences ; Biomedical and Life Sciences ; Brackish ; Carbon cycle ; China ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Diversity indices ; Ecology ; Environmental factors ; Estuaries ; Flow Cytometry ; Fundamental and applied biological sciences. Psychology ; Genetic diversity ; Genetic Variation ; Geoecology/Natural Processes ; Geography ; Heterogeneity ; Libraries ; Life Sciences ; Marinobacter ; Microbial Ecology ; Microbiology ; Microorganisms ; Nature Conservation ; Nitrates ; Nitrates - metabolism ; Original Article ; Phylogeny ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Proteobacteria ; Proteobacteria - classification ; Proteobacteria - genetics ; Proteobacteria - metabolism ; rRNA genes ; Sea water ; Seas ; Seawater - microbiology ; Vibrio ; Water column ; Water depth ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2008-11, Vol.56 (4), p.751-764</ispartof><rights>Copyright 2008 Springer Science + Business Media, Inc.</rights><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e14126a2bc37e1b0b0f2090048424a676de95ba488539a75dcabd2fed55eb1f23</citedby><cites>FETCH-LOGICAL-c453t-e14126a2bc37e1b0b0f2090048424a676de95ba488539a75dcabd2fed55eb1f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40343420$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40343420$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,41487,42556,51318,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20798240$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18481138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Haiyuan</creatorcontrib><creatorcontrib>Jiao, Nianzhi</creatorcontrib><title>Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate" assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Brackish</subject><subject>Carbon cycle</subject><subject>China</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Diversity indices</subject><subject>Ecology</subject><subject>Environmental factors</subject><subject>Estuaries</subject><subject>Flow Cytometry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Geoecology/Natural Processes</subject><subject>Geography</subject><subject>Heterogeneity</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Marinobacter</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nature Conservation</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Polymerase Chain Reaction</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Proteobacteria</subject><subject>Proteobacteria - classification</subject><subject>Proteobacteria - genetics</subject><subject>Proteobacteria - metabolism</subject><subject>rRNA genes</subject><subject>Sea water</subject><subject>Seas</subject><subject>Seawater - microbiology</subject><subject>Vibrio</subject><subject>Water column</subject><subject>Water depth</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EotvCD-AAspCAU2D8kdg-rpZSkKpyKJW4WU4yYb3KOq3tIPXf41VWrcShpznMM-_M6CHkDYPPDEB9SQBc6gpAV0YYWalnZMWk4BXT8vdzsgIwdSUark_IaUo7AKYaLl6Sk9LXjAm9Ijdf_V-Myed76kJP1-0cehc6pNNAr3yOLiNdp-T3fnTZT4FeYMBEfaB5i_RqiqXEQK-nOW_pZuuDo9foXpEXgxsTvj7WM3Lz7fzX5nt1-fPix2Z9WXWyFrlCJhlvHG87oZC10MLAwQBILbl0jWp6NHXrpNa1ME7Vfefang_Y1zW2bODijHxacm_jdDdjynbvU4fj6AJOc7IGFGuM5KyQH58kG9PIWgpZwPf_gbtpjqF8YTkDyTRXh71sgbo4pRRxsLfR7128twzsQY1d1Niixh7UWFVm3h2D53aP_ePE0UUBPhwBlzo3DrF48OmB46CM5hIKxxculVb4g_Hxwqe2v12GdilP8SG0xJWnOYh_Gq2uBQ</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Cai, Haiyuan</creator><creator>Jiao, Nianzhi</creator><general>Springer Science + Business Media, Inc</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope></search><sort><creationdate>20081101</creationdate><title>Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea</title><author>Cai, Haiyuan ; Jiao, Nianzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e14126a2bc37e1b0b0f2090048424a676de95ba488539a75dcabd2fed55eb1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Brackish</topic><topic>Carbon cycle</topic><topic>China</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Diversity indices</topic><topic>Ecology</topic><topic>Environmental factors</topic><topic>Estuaries</topic><topic>Flow Cytometry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Geoecology/Natural Processes</topic><topic>Geography</topic><topic>Heterogeneity</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Marinobacter</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nature Conservation</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Polymerase Chain Reaction</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Proteobacteria</topic><topic>Proteobacteria - classification</topic><topic>Proteobacteria - genetics</topic><topic>Proteobacteria - metabolism</topic><topic>rRNA genes</topic><topic>Sea water</topic><topic>Seas</topic><topic>Seawater - microbiology</topic><topic>Vibrio</topic><topic>Water column</topic><topic>Water depth</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Haiyuan</creatorcontrib><creatorcontrib>Jiao, Nianzhi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Haiyuan</au><au>Jiao, Nianzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>56</volume><issue>4</issue><spage>751</spage><epage>764</epage><pages>751-764</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><coden>MCBEBU</coden><abstract>Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate" assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.</abstract><cop>New York</cop><pub>Springer Science + Business Media, Inc</pub><pmid>18481138</pmid><doi>10.1007/s00248-008-9394-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2008-11, Vol.56 (4), p.751-764
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_miscellaneous_907169421
source MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biodiversity
Biological and medical sciences
Biomedical and Life Sciences
Brackish
Carbon cycle
China
Cyanobacteria
Cyanobacteria - classification
Cyanobacteria - genetics
Cyanobacteria - metabolism
Diversity indices
Ecology
Environmental factors
Estuaries
Flow Cytometry
Fundamental and applied biological sciences. Psychology
Genetic diversity
Genetic Variation
Geoecology/Natural Processes
Geography
Heterogeneity
Libraries
Life Sciences
Marinobacter
Microbial Ecology
Microbiology
Microorganisms
Nature Conservation
Nitrates
Nitrates - metabolism
Original Article
Phylogeny
Polymerase Chain Reaction
Polymorphism, Restriction Fragment Length
Proteobacteria
Proteobacteria - classification
Proteobacteria - genetics
Proteobacteria - metabolism
rRNA genes
Sea water
Seas
Seawater - microbiology
Vibrio
Water column
Water depth
Water Quality/Water Pollution
title Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20and%20Abundance%20of%20Nitrate%20Assimilation%20Genes%20in%20the%20Northern%20South%20China%20Sea&rft.jtitle=Microbial%20ecology&rft.au=Cai,%20Haiyuan&rft.date=2008-11-01&rft.volume=56&rft.issue=4&rft.spage=751&rft.epage=764&rft.pages=751-764&rft.issn=0095-3628&rft.eissn=1432-184X&rft.coden=MCBEBU&rft_id=info:doi/10.1007/s00248-008-9394-7&rft_dat=%3Cjstor_proqu%3E40343420%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210418272&rft_id=info:pmid/18481138&rft_jstor_id=40343420&rfr_iscdi=true