Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment
Abstract The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding th...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2011-11, Vol.32 (32), p.8097-8107 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8107 |
---|---|
container_issue | 32 |
container_start_page | 8097 |
container_title | Biomaterials |
container_volume | 32 |
creator | Ker, Elmer D.F Nain, Amrinder S Weiss, Lee E Wang, Ji Suhan, Joseph Amon, Cristina H Campbell, Phil G |
description | Abstract The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ∼ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine. |
doi_str_mv | 10.1016/j.biomaterials.2011.07.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907169253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961211007964</els_id><sourcerecordid>885911106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-2a7ceef400ef4914c882d5668e3bcdf19d67f8626c41ac269862656921498f583</originalsourceid><addsrcrecordid>eNqNUk2P1SAUJUbjPEf_giFuXLUCbSm4MNHxM5nEhbomFC5Pni2MQDXzB_zd0nQ0xo1u-Dzn3I9zEXpESUsJ5U9O7eTjogskr-fcMkJpS8aWsOEWOlAximaQZLiNDoT2rJGcsjN0L-cTqXfSs7vojFHByNjxA_rxwser5EPx4Yijw8cUv5fP2GlTYso4hhKxnv0xgMV5nZrFmxQDdn5Kcc04G-1cnG3GLiac_bLORQfYvkzlpjhvogbmGVvvHCSokXTxVUIHuysv9e0-uuNqLfDgZj9Hn16_-njxtrl8_-bdxfPLxgwdKw3TowFwPSF1kbQ3QjA7cC6gm4x1VFo-OsEZNz3VhnG5nQcuGe2lcIPoztHjXfcqxa8r5KIWn7f09qSVJCOt8KH7J1KIQVJKCa_IpzuydibnBE7Vhi46XStK1GaYOqk_DVObYYqMqhpWyQ9vwqzTAvY39ZdDFfByB0BtyzcPSWXjIRiwPoEpykb_f3Ge_SVjZh-80fMXuIZ8imsKG4eqzBRRH7bR2SanVkhGyfvuJxayxYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885911106</pqid></control><display><type>article</type><title>Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ker, Elmer D.F ; Nain, Amrinder S ; Weiss, Lee E ; Wang, Ji ; Suhan, Joseph ; Amon, Cristina H ; Campbell, Phil G</creator><creatorcontrib>Ker, Elmer D.F ; Nain, Amrinder S ; Weiss, Lee E ; Wang, Ji ; Suhan, Joseph ; Amon, Cristina H ; Campbell, Phil G</creatorcontrib><description>Abstract The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ∼ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.07.025</identifier><identifier>PMID: 21820736</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alkaline Phosphatase - metabolism ; Animals ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Bone ; Bone morphogenetic protein 2 ; Bone Morphogenetic Protein 2 - pharmacology ; Cell Differentiation - drug effects ; Cell Line ; Dentistry ; Fibroblast Growth Factor 2 - pharmacology ; Growth factors ; Intercellular Signaling Peptides and Proteins - pharmacology ; Mice ; Muscle ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - enzymology ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Particle Size ; Polystyrenes - pharmacology ; Serum - metabolism ; Tendon ; Tendons - cytology ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2011-11, Vol.32 (32), p.8097-8107</ispartof><rights>2011</rights><rights>Copyright © 2011. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-2a7ceef400ef4914c882d5668e3bcdf19d67f8626c41ac269862656921498f583</citedby><cites>FETCH-LOGICAL-c532t-2a7ceef400ef4914c882d5668e3bcdf19d67f8626c41ac269862656921498f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961211007964$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21820736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ker, Elmer D.F</creatorcontrib><creatorcontrib>Nain, Amrinder S</creatorcontrib><creatorcontrib>Weiss, Lee E</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Suhan, Joseph</creatorcontrib><creatorcontrib>Amon, Cristina H</creatorcontrib><creatorcontrib>Campbell, Phil G</creatorcontrib><title>Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ∼ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine.</description><subject>Advanced Basic Science</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Bone</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Dentistry</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Growth factors</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Mice</subject><subject>Muscle</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Particle Size</subject><subject>Polystyrenes - pharmacology</subject><subject>Serum - metabolism</subject><subject>Tendon</subject><subject>Tendons - cytology</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2P1SAUJUbjPEf_giFuXLUCbSm4MNHxM5nEhbomFC5Pni2MQDXzB_zd0nQ0xo1u-Dzn3I9zEXpESUsJ5U9O7eTjogskr-fcMkJpS8aWsOEWOlAximaQZLiNDoT2rJGcsjN0L-cTqXfSs7vojFHByNjxA_rxwser5EPx4Yijw8cUv5fP2GlTYso4hhKxnv0xgMV5nZrFmxQDdn5Kcc04G-1cnG3GLiac_bLORQfYvkzlpjhvogbmGVvvHCSokXTxVUIHuysv9e0-uuNqLfDgZj9Hn16_-njxtrl8_-bdxfPLxgwdKw3TowFwPSF1kbQ3QjA7cC6gm4x1VFo-OsEZNz3VhnG5nQcuGe2lcIPoztHjXfcqxa8r5KIWn7f09qSVJCOt8KH7J1KIQVJKCa_IpzuydibnBE7Vhi46XStK1GaYOqk_DVObYYqMqhpWyQ9vwqzTAvY39ZdDFfByB0BtyzcPSWXjIRiwPoEpykb_f3Ge_SVjZh-80fMXuIZ8imsKG4eqzBRRH7bR2SanVkhGyfvuJxayxYs</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Ker, Elmer D.F</creator><creator>Nain, Amrinder S</creator><creator>Weiss, Lee E</creator><creator>Wang, Ji</creator><creator>Suhan, Joseph</creator><creator>Amon, Cristina H</creator><creator>Campbell, Phil G</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111101</creationdate><title>Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment</title><author>Ker, Elmer D.F ; Nain, Amrinder S ; Weiss, Lee E ; Wang, Ji ; Suhan, Joseph ; Amon, Cristina H ; Campbell, Phil G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-2a7ceef400ef4914c882d5668e3bcdf19d67f8626c41ac269862656921498f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Bone</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Dentistry</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Growth factors</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Mice</topic><topic>Muscle</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Particle Size</topic><topic>Polystyrenes - pharmacology</topic><topic>Serum - metabolism</topic><topic>Tendon</topic><topic>Tendons - cytology</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ker, Elmer D.F</creatorcontrib><creatorcontrib>Nain, Amrinder S</creatorcontrib><creatorcontrib>Weiss, Lee E</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Suhan, Joseph</creatorcontrib><creatorcontrib>Amon, Cristina H</creatorcontrib><creatorcontrib>Campbell, Phil G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ker, Elmer D.F</au><au>Nain, Amrinder S</au><au>Weiss, Lee E</au><au>Wang, Ji</au><au>Suhan, Joseph</au><au>Amon, Cristina H</au><au>Campbell, Phil G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>32</volume><issue>32</issue><spage>8097</spage><epage>8107</epage><pages>8097-8107</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ∼ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21820736</pmid><doi>10.1016/j.biomaterials.2011.07.025</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-11, Vol.32 (32), p.8097-8107 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_907169253 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Advanced Basic Science Alkaline Phosphatase - metabolism Animals Basic Helix-Loop-Helix Transcription Factors - metabolism Bone Bone morphogenetic protein 2 Bone Morphogenetic Protein 2 - pharmacology Cell Differentiation - drug effects Cell Line Dentistry Fibroblast Growth Factor 2 - pharmacology Growth factors Intercellular Signaling Peptides and Proteins - pharmacology Mice Muscle Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - drug effects Muscle Fibers, Skeletal - enzymology Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Particle Size Polystyrenes - pharmacology Serum - metabolism Tendon Tendons - cytology Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioprinting%20of%20growth%20factors%20onto%20aligned%20sub-micron%20fibrous%20scaffolds%20for%20simultaneous%20control%20of%20cell%20differentiation%20and%20alignment&rft.jtitle=Biomaterials&rft.au=Ker,%20Elmer%20D.F&rft.date=2011-11-01&rft.volume=32&rft.issue=32&rft.spage=8097&rft.epage=8107&rft.pages=8097-8107&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.07.025&rft_dat=%3Cproquest_cross%3E885911106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885911106&rft_id=info:pmid/21820736&rft_els_id=S0142961211007964&rfr_iscdi=true |