A method for detecting whistles, moans, and other frequency contour sounds
An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in succ...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2011-06, Vol.129 (6), p.4055-4061 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4061 |
---|---|
container_issue | 6 |
container_start_page | 4055 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 129 |
creator | Mellinger, David K. Martin, Stephen W. Morrissey, Ronald P. Thomas, Len Yosco, James J. |
description | An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well. |
doi_str_mv | 10.1121/1.3531926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907164927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907164927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-ba1aef4ec4fead698174c57539bd632a82fbec3bc915433d4b1a8452f178b1de3</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuBQFHtbXfQPlGxECp2ak6_JbAqXYj-k0E1dh0w-vCMzSU0ySP-9I3e0K-nqEHg4J7wvQidALgAofIYLJhh0VB6gDQhKGiUof4M2hBBoeCflIToq5cfyFIp179AhBakop3KDvm7x5OsuORxSxs5Xb-sQv-Nfu6HU0ZdzPCUTl2Giw6nufMYh-5-zj_YZ2xRrmjMuaY6uvEdvgxmL_7DOY_Tt-svj1W1z_3Bzd7W9byyXbW16A8YH7i0P3jjZKWi5Fa1gXe8ko0bR0HvLetuB4Iw53oNRXNAArerBeXaMPu33PuW0fKRUPQ3F-nE00ae56I60IHlH21elahlQpohY5Nle2pxKyT7opzxMJj9rIPpPxhr0mvFiT9etcz9590_-DXUBH1dgijVjyCbaobw4zoBwRRZ3uXfFDtXUIcX_X93qfU16qUmvNbHf_QSYIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873123805</pqid></control><display><type>article</type><title>A method for detecting whistles, moans, and other frequency contour sounds</title><source>MEDLINE</source><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Mellinger, David K. ; Martin, Stephen W. ; Morrissey, Ronald P. ; Thomas, Len ; Yosco, James J.</creator><creatorcontrib>Mellinger, David K. ; Martin, Stephen W. ; Morrissey, Ronald P. ; Thomas, Len ; Yosco, James J.</creatorcontrib><description>An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3531926</identifier><identifier>PMID: 21682426</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustic signal processing ; Acoustics ; Algorithms ; Animals ; Cetacea ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Humpback Whale - physiology ; Marine ; Minke Whale - physiology ; Oceans and Seas ; Odontoceti ; Physics ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Sound Spectrography ; Species Specificity ; Time Factors ; Underwater sound ; Vocalization, Animal</subject><ispartof>The Journal of the Acoustical Society of America, 2011-06, Vol.129 (6), p.4055-4061</ispartof><rights>2011 Acoustical Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-ba1aef4ec4fead698174c57539bd632a82fbec3bc915433d4b1a8452f178b1de3</citedby><cites>FETCH-LOGICAL-c467t-ba1aef4ec4fead698174c57539bd632a82fbec3bc915433d4b1a8452f178b1de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.3531926$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24310480$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21682426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellinger, David K.</creatorcontrib><creatorcontrib>Martin, Stephen W.</creatorcontrib><creatorcontrib>Morrissey, Ronald P.</creatorcontrib><creatorcontrib>Thomas, Len</creatorcontrib><creatorcontrib>Yosco, James J.</creatorcontrib><title>A method for detecting whistles, moans, and other frequency contour sounds</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well.</description><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Cetacea</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humpback Whale - physiology</subject><subject>Marine</subject><subject>Minke Whale - physiology</subject><subject>Oceans and Seas</subject><subject>Odontoceti</subject><subject>Physics</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sound Spectrography</subject><subject>Species Specificity</subject><subject>Time Factors</subject><subject>Underwater sound</subject><subject>Vocalization, Animal</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuBQFHtbXfQPlGxECp2ak6_JbAqXYj-k0E1dh0w-vCMzSU0ySP-9I3e0K-nqEHg4J7wvQidALgAofIYLJhh0VB6gDQhKGiUof4M2hBBoeCflIToq5cfyFIp179AhBakop3KDvm7x5OsuORxSxs5Xb-sQv-Nfu6HU0ZdzPCUTl2Giw6nufMYh-5-zj_YZ2xRrmjMuaY6uvEdvgxmL_7DOY_Tt-svj1W1z_3Bzd7W9byyXbW16A8YH7i0P3jjZKWi5Fa1gXe8ko0bR0HvLetuB4Iw53oNRXNAArerBeXaMPu33PuW0fKRUPQ3F-nE00ae56I60IHlH21elahlQpohY5Nle2pxKyT7opzxMJj9rIPpPxhr0mvFiT9etcz9590_-DXUBH1dgijVjyCbaobw4zoBwRRZ3uXfFDtXUIcX_X93qfU16qUmvNbHf_QSYIA</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Mellinger, David K.</creator><creator>Martin, Stephen W.</creator><creator>Morrissey, Ronald P.</creator><creator>Thomas, Len</creator><creator>Yosco, James J.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110601</creationdate><title>A method for detecting whistles, moans, and other frequency contour sounds</title><author>Mellinger, David K. ; Martin, Stephen W. ; Morrissey, Ronald P. ; Thomas, Len ; Yosco, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-ba1aef4ec4fead698174c57539bd632a82fbec3bc915433d4b1a8452f178b1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Cetacea</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humpback Whale - physiology</topic><topic>Marine</topic><topic>Minke Whale - physiology</topic><topic>Oceans and Seas</topic><topic>Odontoceti</topic><topic>Physics</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sound Spectrography</topic><topic>Species Specificity</topic><topic>Time Factors</topic><topic>Underwater sound</topic><topic>Vocalization, Animal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellinger, David K.</creatorcontrib><creatorcontrib>Martin, Stephen W.</creatorcontrib><creatorcontrib>Morrissey, Ronald P.</creatorcontrib><creatorcontrib>Thomas, Len</creatorcontrib><creatorcontrib>Yosco, James J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellinger, David K.</au><au>Martin, Stephen W.</au><au>Morrissey, Ronald P.</au><au>Thomas, Len</au><au>Yosco, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for detecting whistles, moans, and other frequency contour sounds</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>129</volume><issue>6</issue><spage>4055</spage><epage>4061</epage><pages>4055-4061</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>21682426</pmid><doi>10.1121/1.3531926</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2011-06, Vol.129 (6), p.4055-4061 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_907164927 |
source | MEDLINE; American Institute of Physics (AIP) Journals; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Acoustic signal processing Acoustics Algorithms Animals Cetacea Exact sciences and technology Fundamental areas of phenomenology (including applications) Humpback Whale - physiology Marine Minke Whale - physiology Oceans and Seas Odontoceti Physics Reproducibility of Results Signal Processing, Computer-Assisted Sound Spectrography Species Specificity Time Factors Underwater sound Vocalization, Animal |
title | A method for detecting whistles, moans, and other frequency contour sounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20detecting%20whistles,%20moans,%20and%20other%20frequency%20contour%20sounds&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Mellinger,%20David%20K.&rft.date=2011-06-01&rft.volume=129&rft.issue=6&rft.spage=4055&rft.epage=4061&rft.pages=4055-4061&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.3531926&rft_dat=%3Cproquest_cross%3E907164927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873123805&rft_id=info:pmid/21682426&rfr_iscdi=true |