Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters

The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2011-04, Vol.461 (4), p.481-491
Hauptverfasser: Van den Eynden, Jimmy, Notelaers, Kristof, Brône, Bert, Janssen, Daniel, Nelissen, Katherine, SahebAli, Sheen, Smolders, Inge, Hellings, Niels, Steels, Paul, Rigo, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 4
container_start_page 481
container_title Pflügers Archiv
container_volume 461
creator Van den Eynden, Jimmy
Notelaers, Kristof
Brône, Bert
Janssen, Daniel
Nelissen, Katherine
SahebAli, Sheen
Smolders, Inge
Hellings, Niels
Steels, Paul
Rigo, Jean-Michel
description The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 μM ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.
doi_str_mv 10.1007/s00424-011-0939-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907163779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301936991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d4d853589c8a1510755aa834f4661c546b5cc58b4643bb9567ad1d35f72de5ae3</originalsourceid><addsrcrecordid>eNp1kU1rVDEUhoModqz-ADcS3LhKPfnOXZaiVSi40XXITXLHlNxkTOYK_fdmmKoguArhPO8bTh6EXlO4ogD6fQcQTBCglMDEJwJP0I4KzggDyp-iHQCnRGllLtCL3u8BgAnDnqMLRrkEA7BDP2_zg08l4li-u-Jjx2vyre5zchmncmzOx5y37Br2Lvu0rbinfXE5lf0Vvsat5oiX2nCvYQyJr9shx4BL3EY2Y7emUrHzKeBxL_1Q2zG2_hI9W1zu8dXjeYm-ffzw9eYTufty-_nm-o54AexIgghGcmkmbxyVFLSUzhkuFqEU9VKoWXovzSyU4PM8SaVdoIHLRbMQpYv8Er079x5a_bHFfrRr6qeNXIl163YCTRXXehrk23_I-7q1sWi3RhqhmZZqQPQMjS_qvcXFHlpaXXuwFOxJiT0rsUOJPSmxMDJvHou3eY3hT-K3gwGwM9DHqOxj-_vy_1t_AWV7l4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858472756</pqid></control><display><type>article</type><title>Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Van den Eynden, Jimmy ; Notelaers, Kristof ; Brône, Bert ; Janssen, Daniel ; Nelissen, Katherine ; SahebAli, Sheen ; Smolders, Inge ; Hellings, Niels ; Steels, Paul ; Rigo, Jean-Michel</creator><creatorcontrib>Van den Eynden, Jimmy ; Notelaers, Kristof ; Brône, Bert ; Janssen, Daniel ; Nelissen, Katherine ; SahebAli, Sheen ; Smolders, Inge ; Hellings, Niels ; Steels, Paul ; Rigo, Jean-Michel</creatorcontrib><description>The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 μM ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-011-0939-0</identifier><identifier>PMID: 21350800</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alanine ; Amino Acid Transport System A - physiology ; Amino acids ; Aminoisobutyric Acids - pharmacology ; Animals ; ATP ; beta-Alanine - pharmacology ; Biomedical and Life Sciences ; Biomedicine ; Calcium (intracellular) ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Cell Biology ; Cell Line ; Glial cells ; Glutamine ; Glycine - metabolism ; Glycine - pharmacology ; Glycine Agents - pharmacology ; Glycine receptors ; Human Physiology ; Immunofluorescence ; Intracellular signalling ; Mice ; Microglia - drug effects ; Microglia - physiology ; Models, Animal ; Molecular Medicine ; Neurosciences ; Neurotransmitters ; Nitric oxide ; Patch-Clamp Techniques ; Receptors ; Receptors, Glycine - agonists ; Receptors, Glycine - antagonists &amp; inhibitors ; Receptors, Glycine - physiology ; Second messengers ; Serine ; Signaling and Cell Physiology ; Sodium ; strychnine ; Strychnine - pharmacology ; Taurine ; Taurine - pharmacology ; thapsigargin</subject><ispartof>Pflügers Archiv, 2011-04, Vol.461 (4), p.481-491</ispartof><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d4d853589c8a1510755aa834f4661c546b5cc58b4643bb9567ad1d35f72de5ae3</citedby><cites>FETCH-LOGICAL-c402t-d4d853589c8a1510755aa834f4661c546b5cc58b4643bb9567ad1d35f72de5ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-011-0939-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-011-0939-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21350800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van den Eynden, Jimmy</creatorcontrib><creatorcontrib>Notelaers, Kristof</creatorcontrib><creatorcontrib>Brône, Bert</creatorcontrib><creatorcontrib>Janssen, Daniel</creatorcontrib><creatorcontrib>Nelissen, Katherine</creatorcontrib><creatorcontrib>SahebAli, Sheen</creatorcontrib><creatorcontrib>Smolders, Inge</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Steels, Paul</creatorcontrib><creatorcontrib>Rigo, Jean-Michel</creatorcontrib><title>Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><addtitle>Pflugers Arch</addtitle><description>The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 μM ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.</description><subject>Alanine</subject><subject>Amino Acid Transport System A - physiology</subject><subject>Amino acids</subject><subject>Aminoisobutyric Acids - pharmacology</subject><subject>Animals</subject><subject>ATP</subject><subject>beta-Alanine - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium (intracellular)</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Glial cells</subject><subject>Glutamine</subject><subject>Glycine - metabolism</subject><subject>Glycine - pharmacology</subject><subject>Glycine Agents - pharmacology</subject><subject>Glycine receptors</subject><subject>Human Physiology</subject><subject>Immunofluorescence</subject><subject>Intracellular signalling</subject><subject>Mice</subject><subject>Microglia - drug effects</subject><subject>Microglia - physiology</subject><subject>Models, Animal</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Neurotransmitters</subject><subject>Nitric oxide</subject><subject>Patch-Clamp Techniques</subject><subject>Receptors</subject><subject>Receptors, Glycine - agonists</subject><subject>Receptors, Glycine - antagonists &amp; inhibitors</subject><subject>Receptors, Glycine - physiology</subject><subject>Second messengers</subject><subject>Serine</subject><subject>Signaling and Cell Physiology</subject><subject>Sodium</subject><subject>strychnine</subject><subject>Strychnine - pharmacology</subject><subject>Taurine</subject><subject>Taurine - pharmacology</subject><subject>thapsigargin</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rVDEUhoModqz-ADcS3LhKPfnOXZaiVSi40XXITXLHlNxkTOYK_fdmmKoguArhPO8bTh6EXlO4ogD6fQcQTBCglMDEJwJP0I4KzggDyp-iHQCnRGllLtCL3u8BgAnDnqMLRrkEA7BDP2_zg08l4li-u-Jjx2vyre5zchmncmzOx5y37Br2Lvu0rbinfXE5lf0Vvsat5oiX2nCvYQyJr9shx4BL3EY2Y7emUrHzKeBxL_1Q2zG2_hI9W1zu8dXjeYm-ffzw9eYTufty-_nm-o54AexIgghGcmkmbxyVFLSUzhkuFqEU9VKoWXovzSyU4PM8SaVdoIHLRbMQpYv8Er079x5a_bHFfrRr6qeNXIl163YCTRXXehrk23_I-7q1sWi3RhqhmZZqQPQMjS_qvcXFHlpaXXuwFOxJiT0rsUOJPSmxMDJvHou3eY3hT-K3gwGwM9DHqOxj-_vy_1t_AWV7l4o</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Van den Eynden, Jimmy</creator><creator>Notelaers, Kristof</creator><creator>Brône, Bert</creator><creator>Janssen, Daniel</creator><creator>Nelissen, Katherine</creator><creator>SahebAli, Sheen</creator><creator>Smolders, Inge</creator><creator>Hellings, Niels</creator><creator>Steels, Paul</creator><creator>Rigo, Jean-Michel</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20110401</creationdate><title>Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters</title><author>Van den Eynden, Jimmy ; Notelaers, Kristof ; Brône, Bert ; Janssen, Daniel ; Nelissen, Katherine ; SahebAli, Sheen ; Smolders, Inge ; Hellings, Niels ; Steels, Paul ; Rigo, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d4d853589c8a1510755aa834f4661c546b5cc58b4643bb9567ad1d35f72de5ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alanine</topic><topic>Amino Acid Transport System A - physiology</topic><topic>Amino acids</topic><topic>Aminoisobutyric Acids - pharmacology</topic><topic>Animals</topic><topic>ATP</topic><topic>beta-Alanine - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium (intracellular)</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Glial cells</topic><topic>Glutamine</topic><topic>Glycine - metabolism</topic><topic>Glycine - pharmacology</topic><topic>Glycine Agents - pharmacology</topic><topic>Glycine receptors</topic><topic>Human Physiology</topic><topic>Immunofluorescence</topic><topic>Intracellular signalling</topic><topic>Mice</topic><topic>Microglia - drug effects</topic><topic>Microglia - physiology</topic><topic>Models, Animal</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Neurotransmitters</topic><topic>Nitric oxide</topic><topic>Patch-Clamp Techniques</topic><topic>Receptors</topic><topic>Receptors, Glycine - agonists</topic><topic>Receptors, Glycine - antagonists &amp; inhibitors</topic><topic>Receptors, Glycine - physiology</topic><topic>Second messengers</topic><topic>Serine</topic><topic>Signaling and Cell Physiology</topic><topic>Sodium</topic><topic>strychnine</topic><topic>Strychnine - pharmacology</topic><topic>Taurine</topic><topic>Taurine - pharmacology</topic><topic>thapsigargin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van den Eynden, Jimmy</creatorcontrib><creatorcontrib>Notelaers, Kristof</creatorcontrib><creatorcontrib>Brône, Bert</creatorcontrib><creatorcontrib>Janssen, Daniel</creatorcontrib><creatorcontrib>Nelissen, Katherine</creatorcontrib><creatorcontrib>SahebAli, Sheen</creatorcontrib><creatorcontrib>Smolders, Inge</creatorcontrib><creatorcontrib>Hellings, Niels</creatorcontrib><creatorcontrib>Steels, Paul</creatorcontrib><creatorcontrib>Rigo, Jean-Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van den Eynden, Jimmy</au><au>Notelaers, Kristof</au><au>Brône, Bert</au><au>Janssen, Daniel</au><au>Nelissen, Katherine</au><au>SahebAli, Sheen</au><au>Smolders, Inge</au><au>Hellings, Niels</au><au>Steels, Paul</au><au>Rigo, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><addtitle>Pflugers Arch</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>461</volume><issue>4</issue><spage>481</spage><epage>491</epage><pages>481-491</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 μM ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or β-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate α-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21350800</pmid><doi>10.1007/s00424-011-0939-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2011-04, Vol.461 (4), p.481-491
issn 0031-6768
1432-2013
language eng
recordid cdi_proquest_miscellaneous_907163779
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alanine
Amino Acid Transport System A - physiology
Amino acids
Aminoisobutyric Acids - pharmacology
Animals
ATP
beta-Alanine - pharmacology
Biomedical and Life Sciences
Biomedicine
Calcium (intracellular)
Calcium Signaling - drug effects
Calcium Signaling - physiology
Cell Biology
Cell Line
Glial cells
Glutamine
Glycine - metabolism
Glycine - pharmacology
Glycine Agents - pharmacology
Glycine receptors
Human Physiology
Immunofluorescence
Intracellular signalling
Mice
Microglia - drug effects
Microglia - physiology
Models, Animal
Molecular Medicine
Neurosciences
Neurotransmitters
Nitric oxide
Patch-Clamp Techniques
Receptors
Receptors, Glycine - agonists
Receptors, Glycine - antagonists & inhibitors
Receptors, Glycine - physiology
Second messengers
Serine
Signaling and Cell Physiology
Sodium
strychnine
Strychnine - pharmacology
Taurine
Taurine - pharmacology
thapsigargin
title Glycine enhances microglial intracellular calcium signaling. A role for sodium-coupled neutral amino acid transporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycine%20enhances%20microglial%20intracellular%20calcium%20signaling.%20A%20role%20for%20sodium-coupled%20neutral%20amino%20acid%20transporters&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Van%20den%20Eynden,%20Jimmy&rft.date=2011-04-01&rft.volume=461&rft.issue=4&rft.spage=481&rft.epage=491&rft.pages=481-491&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-011-0939-0&rft_dat=%3Cproquest_cross%3E2301936991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858472756&rft_id=info:pmid/21350800&rfr_iscdi=true