Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas

Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2010-05, Vol.221 (1), p.57-67
Hauptverfasser: Obrador-Hevia, Antònia, Chin, Suet-Feung, González, Sara, Rees, Jonathan, Vilardell, Felip, Greenson, Joel K, Cordero, David, Moreno, Víctor, Caldas, Carlos, Capellá, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 57
container_title The Journal of pathology
container_volume 221
creator Obrador-Hevia, Antònia
Chin, Suet-Feung
González, Sara
Rees, Jonathan
Vilardell, Felip
Greenson, Joel K
Cordero, David
Moreno, Víctor
Caldas, Carlos
Capellá, Gabriel
description Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, β-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear β-catenin staining was seen in 94% and 80% of the adenomas. β-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on β-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.2685
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907163034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733183181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-cbc18935ed027f5848d22b8d1fbb82e0354b4675743ec7b3b9324856a897c5743</originalsourceid><addsrcrecordid>eNqF0E1rFDEYB_Agil1XD34BzUXEw7R5mbwdp6ttxWIXt6UXIWQymTU6m6zJrNpvb5ZZ60mEQCD5PS_8AXiO0TFGiJxszfjlmHDJHoAZRopXSir-EMzKH6lojcUReJLzV4SQUow9BkcEYcWRUDPw-SrYuHbBW_jhU7OCPsMQRxicdTmbdAf7mOBtGGH262CGwYc1NHb0P8zoY4A-wGa5qEzO0Xozug6eNUtoOhfixuSn4FFvhuyeHe45uDl7d724qC6vzt8vmsvK1pKyyrYWS0WZ6xARPZO17AhpZYf7tpXEIcrqtuaCiZo6K1raKkpqybiRStj96xy8nvpuU_y-c3nUG5-tGwYTXNxlrZDAnCL6fykoxbIcXOSbSdoUc06u19vkNyURjZHep673qet96sW-OHTdtRvX3cs_MRfw6gBMtmbokwnW57-OCCZZyWIOTib30w_u7t8T9bK5vjiMrqYKn0f3677CpG-aCyqYvv14rk9PV0jh5UK_Lf7l5HsTtVmnssXNquxJEZaEYyLpb9ZUr2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733183181</pqid></control><display><type>article</type><title>Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Obrador-Hevia, Antònia ; Chin, Suet-Feung ; González, Sara ; Rees, Jonathan ; Vilardell, Felip ; Greenson, Joel K ; Cordero, David ; Moreno, Víctor ; Caldas, Carlos ; Capellá, Gabriel</creator><creatorcontrib>Obrador-Hevia, Antònia ; Chin, Suet-Feung ; González, Sara ; Rees, Jonathan ; Vilardell, Felip ; Greenson, Joel K ; Cordero, David ; Moreno, Víctor ; Caldas, Carlos ; Capellá, Gabriel</creatorcontrib><description>Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, β-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear β-catenin staining was seen in 94% and 80% of the adenomas. β-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on β-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.2685</identifier><identifier>PMID: 20196079</identifier><identifier>CODEN: JPTLAS</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adenoma ; Adenomatous Polyposis Coli - genetics ; Adenomatous Polyposis Coli - metabolism ; Adenomatous Polyposis Coli Protein - biosynthesis ; Adenomatous Polyposis Coli Protein - genetics ; Adult ; APC ; beta Catenin - metabolism ; Biological and medical sciences ; catenin ; Cell Nucleus - metabolism ; Chromosomes ; colorectal cancer ; Comparative Genomic Hybridization ; copy number ; DNA ; Familial adenomatous polyposis ; Female ; Frizzled-related protein 1 ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Expression Regulation, Neoplastic ; Genes, APC ; Genetic Predisposition to Disease ; genomic profiling ; genomics ; Germ-Line Mutation ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; K-Ras protein ; Loss of Heterozygosity ; Male ; Medical sciences ; mRNA ; Myc protein ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Point mutation ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - physiology ; Proto-Oncogene Proteins p21(ras) ; ras Proteins - genetics ; ras Proteins - physiology ; Signal transduction ; Signal Transduction - physiology ; Stomach. Duodenum. Small intestine. Colon. Rectum. Anus ; Tumorigenesis ; Tumors ; Wnt protein ; Wnt Proteins - physiology ; Wnt signalling ; Young Adult</subject><ispartof>The Journal of pathology, 2010-05, Vol.221 (1), p.57-67</ispartof><rights>Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4835-cbc18935ed027f5848d22b8d1fbb82e0354b4675743ec7b3b9324856a897c5743</citedby><cites>FETCH-LOGICAL-c4835-cbc18935ed027f5848d22b8d1fbb82e0354b4675743ec7b3b9324856a897c5743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.2685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.2685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22758548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20196079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obrador-Hevia, Antònia</creatorcontrib><creatorcontrib>Chin, Suet-Feung</creatorcontrib><creatorcontrib>González, Sara</creatorcontrib><creatorcontrib>Rees, Jonathan</creatorcontrib><creatorcontrib>Vilardell, Felip</creatorcontrib><creatorcontrib>Greenson, Joel K</creatorcontrib><creatorcontrib>Cordero, David</creatorcontrib><creatorcontrib>Moreno, Víctor</creatorcontrib><creatorcontrib>Caldas, Carlos</creatorcontrib><creatorcontrib>Capellá, Gabriel</creatorcontrib><title>Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, β-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear β-catenin staining was seen in 94% and 80% of the adenomas. β-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on β-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>Adenoma</subject><subject>Adenomatous Polyposis Coli - genetics</subject><subject>Adenomatous Polyposis Coli - metabolism</subject><subject>Adenomatous Polyposis Coli Protein - biosynthesis</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Adult</subject><subject>APC</subject><subject>beta Catenin - metabolism</subject><subject>Biological and medical sciences</subject><subject>catenin</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromosomes</subject><subject>colorectal cancer</subject><subject>Comparative Genomic Hybridization</subject><subject>copy number</subject><subject>DNA</subject><subject>Familial adenomatous polyposis</subject><subject>Female</subject><subject>Frizzled-related protein 1</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, APC</subject><subject>Genetic Predisposition to Disease</subject><subject>genomic profiling</subject><subject>genomics</subject><subject>Germ-Line Mutation</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>K-Ras protein</subject><subject>Loss of Heterozygosity</subject><subject>Male</subject><subject>Medical sciences</subject><subject>mRNA</subject><subject>Myc protein</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Point mutation</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - physiology</subject><subject>Proto-Oncogene Proteins p21(ras)</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - physiology</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>Wnt Proteins - physiology</subject><subject>Wnt signalling</subject><subject>Young Adult</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1rFDEYB_Agil1XD34BzUXEw7R5mbwdp6ttxWIXt6UXIWQymTU6m6zJrNpvb5ZZ60mEQCD5PS_8AXiO0TFGiJxszfjlmHDJHoAZRopXSir-EMzKH6lojcUReJLzV4SQUow9BkcEYcWRUDPw-SrYuHbBW_jhU7OCPsMQRxicdTmbdAf7mOBtGGH262CGwYc1NHb0P8zoY4A-wGa5qEzO0Xozug6eNUtoOhfixuSn4FFvhuyeHe45uDl7d724qC6vzt8vmsvK1pKyyrYWS0WZ6xARPZO17AhpZYf7tpXEIcrqtuaCiZo6K1raKkpqybiRStj96xy8nvpuU_y-c3nUG5-tGwYTXNxlrZDAnCL6fykoxbIcXOSbSdoUc06u19vkNyURjZHep673qet96sW-OHTdtRvX3cs_MRfw6gBMtmbokwnW57-OCCZZyWIOTib30w_u7t8T9bK5vjiMrqYKn0f3677CpG-aCyqYvv14rk9PV0jh5UK_Lf7l5HsTtVmnssXNquxJEZaEYyLpb9ZUr2I</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Obrador-Hevia, Antònia</creator><creator>Chin, Suet-Feung</creator><creator>González, Sara</creator><creator>Rees, Jonathan</creator><creator>Vilardell, Felip</creator><creator>Greenson, Joel K</creator><creator>Cordero, David</creator><creator>Moreno, Víctor</creator><creator>Caldas, Carlos</creator><creator>Capellá, Gabriel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>201005</creationdate><title>Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas</title><author>Obrador-Hevia, Antònia ; Chin, Suet-Feung ; González, Sara ; Rees, Jonathan ; Vilardell, Felip ; Greenson, Joel K ; Cordero, David ; Moreno, Víctor ; Caldas, Carlos ; Capellá, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-cbc18935ed027f5848d22b8d1fbb82e0354b4675743ec7b3b9324856a897c5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenoma</topic><topic>Adenomatous Polyposis Coli - genetics</topic><topic>Adenomatous Polyposis Coli - metabolism</topic><topic>Adenomatous Polyposis Coli Protein - biosynthesis</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Adult</topic><topic>APC</topic><topic>beta Catenin - metabolism</topic><topic>Biological and medical sciences</topic><topic>catenin</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromosomes</topic><topic>colorectal cancer</topic><topic>Comparative Genomic Hybridization</topic><topic>copy number</topic><topic>DNA</topic><topic>Familial adenomatous polyposis</topic><topic>Female</topic><topic>Frizzled-related protein 1</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, APC</topic><topic>Genetic Predisposition to Disease</topic><topic>genomic profiling</topic><topic>genomics</topic><topic>Germ-Line Mutation</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>K-Ras protein</topic><topic>Loss of Heterozygosity</topic><topic>Male</topic><topic>Medical sciences</topic><topic>mRNA</topic><topic>Myc protein</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Point mutation</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - physiology</topic><topic>Proto-Oncogene Proteins p21(ras)</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - physiology</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>Wnt Proteins - physiology</topic><topic>Wnt signalling</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obrador-Hevia, Antònia</creatorcontrib><creatorcontrib>Chin, Suet-Feung</creatorcontrib><creatorcontrib>González, Sara</creatorcontrib><creatorcontrib>Rees, Jonathan</creatorcontrib><creatorcontrib>Vilardell, Felip</creatorcontrib><creatorcontrib>Greenson, Joel K</creatorcontrib><creatorcontrib>Cordero, David</creatorcontrib><creatorcontrib>Moreno, Víctor</creatorcontrib><creatorcontrib>Caldas, Carlos</creatorcontrib><creatorcontrib>Capellá, Gabriel</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obrador-Hevia, Antònia</au><au>Chin, Suet-Feung</au><au>González, Sara</au><au>Rees, Jonathan</au><au>Vilardell, Felip</au><au>Greenson, Joel K</au><au>Cordero, David</au><au>Moreno, Víctor</au><au>Caldas, Carlos</au><au>Capellá, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2010-05</date><risdate>2010</risdate><volume>221</volume><issue>1</issue><spage>57</spage><epage>67</epage><pages>57-67</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><coden>JPTLAS</coden><abstract>Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, β-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear β-catenin staining was seen in 94% and 80% of the adenomas. β-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on β-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>20196079</pmid><doi>10.1002/path.2685</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2010-05, Vol.221 (1), p.57-67
issn 0022-3417
1096-9896
language eng
recordid cdi_proquest_miscellaneous_907163034
source MEDLINE; Access via Wiley Online Library
subjects Adenoma
Adenomatous Polyposis Coli - genetics
Adenomatous Polyposis Coli - metabolism
Adenomatous Polyposis Coli Protein - biosynthesis
Adenomatous Polyposis Coli Protein - genetics
Adult
APC
beta Catenin - metabolism
Biological and medical sciences
catenin
Cell Nucleus - metabolism
Chromosomes
colorectal cancer
Comparative Genomic Hybridization
copy number
DNA
Familial adenomatous polyposis
Female
Frizzled-related protein 1
Gastroenterology. Liver. Pancreas. Abdomen
Gene Expression Regulation, Neoplastic
Genes, APC
Genetic Predisposition to Disease
genomic profiling
genomics
Germ-Line Mutation
Humans
Investigative techniques, diagnostic techniques (general aspects)
K-Ras protein
Loss of Heterozygosity
Male
Medical sciences
mRNA
Myc protein
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Point mutation
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - physiology
Proto-Oncogene Proteins p21(ras)
ras Proteins - genetics
ras Proteins - physiology
Signal transduction
Signal Transduction - physiology
Stomach. Duodenum. Small intestine. Colon. Rectum. Anus
Tumorigenesis
Tumors
Wnt protein
Wnt Proteins - physiology
Wnt signalling
Young Adult
title Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oncogenic%20KRAS%20is%20not%20necessary%20for%20Wnt%20signalling%20activation%20in%20APC-associated%20FAP%20adenomas&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Obrador-Hevia,%20Ant%C3%B2nia&rft.date=2010-05&rft.volume=221&rft.issue=1&rft.spage=57&rft.epage=67&rft.pages=57-67&rft.issn=0022-3417&rft.eissn=1096-9896&rft.coden=JPTLAS&rft_id=info:doi/10.1002/path.2685&rft_dat=%3Cproquest_cross%3E733183181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733183181&rft_id=info:pmid/20196079&rfr_iscdi=true