Coupling of protein and environment fluctuations
We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2011-08, Vol.1814 (8), p.916-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | 8 |
container_start_page | 916 |
container_title | Biochimica et biophysica acta |
container_volume | 1814 |
creator | Young, R.D. Fenimore, P.W. |
description | We review the concepts of protein dynamics developed over the last 35
years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β
h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β
h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches". |
doi_str_mv | 10.1016/j.bbapap.2011.05.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907162373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963911001294</els_id><sourcerecordid>872527543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhq2Kql_wDxDkxinpjD_W9gUJraAgVeIAPVuO41ReZe1gJ5X49_UqhSOcZg7PvDPzEPIWoUPA3e2h63s727mjgNiB6ADEGblCJVWLXPBXtRcSWr1j-pJcl3IAoCCluCCXFHe0hogrAvu0zlOIj00amzmnxYfY2Dg0Pj6FnOLRx6UZp9Utq11CiuU1OR_tVPybl3pDHr58_rn_2t5_v_u2_3TfOo5yaXdeMo7okPdgtdOaaqoo8N4NUvTIfC9HwfWgqBsVaC2YHBkqMYAGxRHYDfmw5dajfq2-LOYYivPTZKNPazEaZH2CSfZfUkkqqBT8RPKNdDmVkv1o5hyONv82COYk1RzMJtWcpBoQpkqtY-9eFqz90Q9_h_5YrMD7DRhtMvYxh2IeftQEUY0jZ1pV4uNG-KrsKfhsigs-Oj-E7N1ihhT-fcMztOOQig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872527543</pqid></control><display><type>article</type><title>Coupling of protein and environment fluctuations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Young, R.D. ; Fenimore, P.W.</creator><creatorcontrib>Young, R.D. ; Fenimore, P.W.</creatorcontrib><description>We review the concepts of protein dynamics developed over the last 35
years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β
h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β
h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2011.05.005</identifier><identifier>PMID: 21621015</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Calorimetry ; Calorimetry, Differential Scanning ; differential scanning calorimetry ; glass ; myoglobin ; Neutron scattering ; Neutrons ; powders ; Protein dynamics ; Protein hydration ; Proteins - chemistry ; Scattering, Radiation ; solvents ; spectroscopy ; Spectrum Analysis - methods ; temperature ; Temperature-dependence</subject><ispartof>Biochimica et biophysica acta, 2011-08, Vol.1814 (8), p.916-921</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</citedby><cites>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbapap.2011.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21621015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, R.D.</creatorcontrib><creatorcontrib>Fenimore, P.W.</creatorcontrib><title>Coupling of protein and environment fluctuations</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>We review the concepts of protein dynamics developed over the last 35
years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β
h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β
h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</description><subject>Calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>differential scanning calorimetry</subject><subject>glass</subject><subject>myoglobin</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>powders</subject><subject>Protein dynamics</subject><subject>Protein hydration</subject><subject>Proteins - chemistry</subject><subject>Scattering, Radiation</subject><subject>solvents</subject><subject>spectroscopy</subject><subject>Spectrum Analysis - methods</subject><subject>temperature</subject><subject>Temperature-dependence</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhq2Kql_wDxDkxinpjD_W9gUJraAgVeIAPVuO41ReZe1gJ5X49_UqhSOcZg7PvDPzEPIWoUPA3e2h63s727mjgNiB6ADEGblCJVWLXPBXtRcSWr1j-pJcl3IAoCCluCCXFHe0hogrAvu0zlOIj00amzmnxYfY2Dg0Pj6FnOLRx6UZp9Utq11CiuU1OR_tVPybl3pDHr58_rn_2t5_v_u2_3TfOo5yaXdeMo7okPdgtdOaaqoo8N4NUvTIfC9HwfWgqBsVaC2YHBkqMYAGxRHYDfmw5dajfq2-LOYYivPTZKNPazEaZH2CSfZfUkkqqBT8RPKNdDmVkv1o5hyONv82COYk1RzMJtWcpBoQpkqtY-9eFqz90Q9_h_5YrMD7DRhtMvYxh2IeftQEUY0jZ1pV4uNG-KrsKfhsigs-Oj-E7N1ihhT-fcMztOOQig</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Young, R.D.</creator><creator>Fenimore, P.W.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20110801</creationdate><title>Coupling of protein and environment fluctuations</title><author>Young, R.D. ; Fenimore, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>differential scanning calorimetry</topic><topic>glass</topic><topic>myoglobin</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>powders</topic><topic>Protein dynamics</topic><topic>Protein hydration</topic><topic>Proteins - chemistry</topic><topic>Scattering, Radiation</topic><topic>solvents</topic><topic>spectroscopy</topic><topic>Spectrum Analysis - methods</topic><topic>temperature</topic><topic>Temperature-dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, R.D.</creatorcontrib><creatorcontrib>Fenimore, P.W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, R.D.</au><au>Fenimore, P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of protein and environment fluctuations</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>1814</volume><issue>8</issue><spage>916</spage><epage>921</epage><pages>916-921</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>We review the concepts of protein dynamics developed over the last 35
years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β
h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β
h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21621015</pmid><doi>10.1016/j.bbapap.2011.05.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-9639 |
ispartof | Biochimica et biophysica acta, 2011-08, Vol.1814 (8), p.916-921 |
issn | 1570-9639 0006-3002 1878-1454 |
language | eng |
recordid | cdi_proquest_miscellaneous_907162373 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Calorimetry Calorimetry, Differential Scanning differential scanning calorimetry glass myoglobin Neutron scattering Neutrons powders Protein dynamics Protein hydration Proteins - chemistry Scattering, Radiation solvents spectroscopy Spectrum Analysis - methods temperature Temperature-dependence |
title | Coupling of protein and environment fluctuations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20protein%20and%20environment%20fluctuations&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Young,%20R.D.&rft.date=2011-08-01&rft.volume=1814&rft.issue=8&rft.spage=916&rft.epage=921&rft.pages=916-921&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2011.05.005&rft_dat=%3Cproquest_cross%3E872527543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872527543&rft_id=info:pmid/21621015&rft_els_id=S1570963911001294&rfr_iscdi=true |