Coupling of protein and environment fluctuations

We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2011-08, Vol.1814 (8), p.916-921
Hauptverfasser: Young, R.D., Fenimore, P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 8
container_start_page 916
container_title Biochimica et biophysica acta
container_volume 1814
creator Young, R.D.
Fenimore, P.W.
description We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".
doi_str_mv 10.1016/j.bbapap.2011.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907162373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963911001294</els_id><sourcerecordid>872527543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhq2Kql_wDxDkxinpjD_W9gUJraAgVeIAPVuO41ReZe1gJ5X49_UqhSOcZg7PvDPzEPIWoUPA3e2h63s727mjgNiB6ADEGblCJVWLXPBXtRcSWr1j-pJcl3IAoCCluCCXFHe0hogrAvu0zlOIj00amzmnxYfY2Dg0Pj6FnOLRx6UZp9Utq11CiuU1OR_tVPybl3pDHr58_rn_2t5_v_u2_3TfOo5yaXdeMo7okPdgtdOaaqoo8N4NUvTIfC9HwfWgqBsVaC2YHBkqMYAGxRHYDfmw5dajfq2-LOYYivPTZKNPazEaZH2CSfZfUkkqqBT8RPKNdDmVkv1o5hyONv82COYk1RzMJtWcpBoQpkqtY-9eFqz90Q9_h_5YrMD7DRhtMvYxh2IeftQEUY0jZ1pV4uNG-KrsKfhsigs-Oj-E7N1ihhT-fcMztOOQig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872527543</pqid></control><display><type>article</type><title>Coupling of protein and environment fluctuations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Young, R.D. ; Fenimore, P.W.</creator><creatorcontrib>Young, R.D. ; Fenimore, P.W.</creatorcontrib><description>We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</description><identifier>ISSN: 1570-9639</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2011.05.005</identifier><identifier>PMID: 21621015</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Calorimetry ; Calorimetry, Differential Scanning ; differential scanning calorimetry ; glass ; myoglobin ; Neutron scattering ; Neutrons ; powders ; Protein dynamics ; Protein hydration ; Proteins - chemistry ; Scattering, Radiation ; solvents ; spectroscopy ; Spectrum Analysis - methods ; temperature ; Temperature-dependence</subject><ispartof>Biochimica et biophysica acta, 2011-08, Vol.1814 (8), p.916-921</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</citedby><cites>FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbapap.2011.05.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21621015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, R.D.</creatorcontrib><creatorcontrib>Fenimore, P.W.</creatorcontrib><title>Coupling of protein and environment fluctuations</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</description><subject>Calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>differential scanning calorimetry</subject><subject>glass</subject><subject>myoglobin</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>powders</subject><subject>Protein dynamics</subject><subject>Protein hydration</subject><subject>Proteins - chemistry</subject><subject>Scattering, Radiation</subject><subject>solvents</subject><subject>spectroscopy</subject><subject>Spectrum Analysis - methods</subject><subject>temperature</subject><subject>Temperature-dependence</subject><issn>1570-9639</issn><issn>0006-3002</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhq2Kql_wDxDkxinpjD_W9gUJraAgVeIAPVuO41ReZe1gJ5X49_UqhSOcZg7PvDPzEPIWoUPA3e2h63s727mjgNiB6ADEGblCJVWLXPBXtRcSWr1j-pJcl3IAoCCluCCXFHe0hogrAvu0zlOIj00amzmnxYfY2Dg0Pj6FnOLRx6UZp9Utq11CiuU1OR_tVPybl3pDHr58_rn_2t5_v_u2_3TfOo5yaXdeMo7okPdgtdOaaqoo8N4NUvTIfC9HwfWgqBsVaC2YHBkqMYAGxRHYDfmw5dajfq2-LOYYivPTZKNPazEaZH2CSfZfUkkqqBT8RPKNdDmVkv1o5hyONv82COYk1RzMJtWcpBoQpkqtY-9eFqz90Q9_h_5YrMD7DRhtMvYxh2IeftQEUY0jZ1pV4uNG-KrsKfhsigs-Oj-E7N1ihhT-fcMztOOQig</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Young, R.D.</creator><creator>Fenimore, P.W.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20110801</creationdate><title>Coupling of protein and environment fluctuations</title><author>Young, R.D. ; Fenimore, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6e73411c14b0a9c992928204bcd75b13eb7f549d82cf8099537f3185d09084103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>differential scanning calorimetry</topic><topic>glass</topic><topic>myoglobin</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>powders</topic><topic>Protein dynamics</topic><topic>Protein hydration</topic><topic>Proteins - chemistry</topic><topic>Scattering, Radiation</topic><topic>solvents</topic><topic>spectroscopy</topic><topic>Spectrum Analysis - methods</topic><topic>temperature</topic><topic>Temperature-dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, R.D.</creatorcontrib><creatorcontrib>Fenimore, P.W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, R.D.</au><au>Fenimore, P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of protein and environment fluctuations</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>1814</volume><issue>8</issue><spage>916</spage><epage>921</epage><pages>916-921</pages><issn>1570-9639</issn><issn>0006-3002</issn><eissn>1878-1454</eissn><abstract>We review the concepts of protein dynamics developed over the last 35 years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β h process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β h fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21621015</pmid><doi>10.1016/j.bbapap.2011.05.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta, 2011-08, Vol.1814 (8), p.916-921
issn 1570-9639
0006-3002
1878-1454
language eng
recordid cdi_proquest_miscellaneous_907162373
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Calorimetry
Calorimetry, Differential Scanning
differential scanning calorimetry
glass
myoglobin
Neutron scattering
Neutrons
powders
Protein dynamics
Protein hydration
Proteins - chemistry
Scattering, Radiation
solvents
spectroscopy
Spectrum Analysis - methods
temperature
Temperature-dependence
title Coupling of protein and environment fluctuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20protein%20and%20environment%20fluctuations&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Young,%20R.D.&rft.date=2011-08-01&rft.volume=1814&rft.issue=8&rft.spage=916&rft.epage=921&rft.pages=916-921&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2011.05.005&rft_dat=%3Cproquest_cross%3E872527543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872527543&rft_id=info:pmid/21621015&rft_els_id=S1570963911001294&rfr_iscdi=true