Sphingosylphosphorylcholine stimulates CCL2 production from human umbilical vein endothelial cells
Sphingosylphosphorylcholine (SPC) is a component of high-density lipoprotein particles. We investigated the functional role of SPC in HUVECs. SPC stimulation induced production of the CCL2 chemokine in a PTX-sensitive G-protein-dependent manner. SPC treatment caused the activation of NF-κB and AP-1,...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2011-04, Vol.186 (7), p.4347-4353 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sphingosylphosphorylcholine (SPC) is a component of high-density lipoprotein particles. We investigated the functional role of SPC in HUVECs. SPC stimulation induced production of the CCL2 chemokine in a PTX-sensitive G-protein-dependent manner. SPC treatment caused the activation of NF-κB and AP-1, which are essential for SPC-induced CCL2 production, and induced the activation of three MAPKs, ERK, p38 MAPK, and JNK. Inhibition of p38 MAPK or JNK by specific inhibitors caused a dramatic decrease in SPC-induced CCL2 production. The Jak/STAT3 pathway was also activated upon SPC stimulation of HUVECs. Pretreatment with a Jak inhibitor blocked not only SPC-induced p38 MAPK and JNK activation, but also NF-κB and AP-1 activation. Our results suggest that SPC stimulates HUVECs, resulting in Jak/STAT3-, NF-κB-, and AP-1-mediated CCL2 production. We also observed that SPC stimulated expression of the adhesion molecule ICAM-1 in HUVECs. Our results suggest that SPC may contribute to atherosclerosis; therefore, SPC and its unidentified target receptor offer a starting point for the development of a treatment for atherosclerosis. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1002068 |