Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity?
[Display omitted] ► Encystment site and temperature affect parasite reproductive strategies. ► High temperature may indicate lowered host longevity and narrow transmission window. Parasites adjust development strategies in response to cues related to transmission. ► Adaptive plasticity in parasite d...
Gespeichert in:
Veröffentlicht in: | International journal for parasitology 2011-05, Vol.41 (6), p.697-704 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 6 |
container_start_page | 697 |
container_title | International journal for parasitology |
container_volume | 41 |
creator | Herrmann, Kristin K. Poulin, Robert |
description | [Display omitted]
► Encystment site and temperature affect parasite reproductive strategies. ► High temperature may indicate lowered host longevity and narrow transmission window. Parasites adjust development strategies in response to cues related to transmission. ► Adaptive plasticity in parasite development is greater than previously thought.
The typical three-host life cycle of most trematodes creates transmission challenges for which a variety of adaptations have evolved to increase the probability of transmission. Some species can abbreviate their life cycle via progenesis, the precocious maturation of the parasite in the second intermediate host resulting in the production of eggs through self-fertilisation without requiring a definitive host. Adoption of the progenetic life cycle may be a conditional strategy in response to different environmental cues related to low probability of transmission to the definitive host. Using high water temperature and/or limited diet as experimental stressors, we tested the effect of body condition and life span of the fish second intermediate host on facultative truncation of the typical three-host life cycle by progenesis in Stegodexamene anguillae. The results suggest that environmental cues, such as temperature and encystment site, may signal transmission opportunities to the parasite so that it may adjust its developmental strategy accordingly. Indeed, a greater proportion of worms became progenetic at higher temperatures, and progenesis was more common among worms encysted in the gonads or body cavity of their fish hosts than among those in other host tissues. These findings highlight the often unrecognised plasticity in parasite developmental and transmission strategies. |
doi_str_mv | 10.1016/j.ijpara.2011.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907158061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020751911000518</els_id><sourcerecordid>907158061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-c5c9b2e51b9a6a8986e759bf40e1ce0758fa10b6dae024e90ee01a55529e35cb3</originalsourceid><addsrcrecordid>eNqFkVGL1DAQx4N4eOvpNxDti_jUdZImbeKDIqfeCQs-6L0a0nS6m6Vt1iQ92G9vlq76dsLAMMzvPzPMn5AXFNYUaP12v3b7gwlmzYDSNeQA9YisqGxUCbQSj8kKgEHZCKouydMY9wBUVJw_IZeMVkzViq7Iz43rsbBHO2CRwjxZk5yfCjcVJtc4muQ7fFd88hiLndvuMBQJxwMGk-aAmetclmARdz6k3Nz5mIrBT1u8d-n44Rm56M0Q8fk5X5G7L59_XN-Wm283X68_bkrLeZNKK6xqGQraKlMbqWSNjVBtzwGpRWiE7A2Ftu4MAuOoABGoEUIwhZWwbXVF3ixzD8H_mjEmPbpocRjMhH6OWkFDhYSa_peUdcVZLRuZSb6QNvgYA_b6ENxowlFT0CcL9F4vFuiTBRpygMqyl-cFczti91f05-cZeH0GTLRm6IOZrIv_OE4Z45Jn7tXC9cZrsw2ZufueN_Hso2SCnya9XwjMr713GHS0DieLnQtok-68e_jW3653r-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863426878</pqid></control><display><type>article</type><title>Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Herrmann, Kristin K. ; Poulin, Robert</creator><creatorcontrib>Herrmann, Kristin K. ; Poulin, Robert</creatorcontrib><description>[Display omitted]
► Encystment site and temperature affect parasite reproductive strategies. ► High temperature may indicate lowered host longevity and narrow transmission window. Parasites adjust development strategies in response to cues related to transmission. ► Adaptive plasticity in parasite development is greater than previously thought.
The typical three-host life cycle of most trematodes creates transmission challenges for which a variety of adaptations have evolved to increase the probability of transmission. Some species can abbreviate their life cycle via progenesis, the precocious maturation of the parasite in the second intermediate host resulting in the production of eggs through self-fertilisation without requiring a definitive host. Adoption of the progenetic life cycle may be a conditional strategy in response to different environmental cues related to low probability of transmission to the definitive host. Using high water temperature and/or limited diet as experimental stressors, we tested the effect of body condition and life span of the fish second intermediate host on facultative truncation of the typical three-host life cycle by progenesis in Stegodexamene anguillae. The results suggest that environmental cues, such as temperature and encystment site, may signal transmission opportunities to the parasite so that it may adjust its developmental strategy accordingly. Indeed, a greater proportion of worms became progenetic at higher temperatures, and progenesis was more common among worms encysted in the gonads or body cavity of their fish hosts than among those in other host tissues. These findings highlight the often unrecognised plasticity in parasite developmental and transmission strategies.</description><identifier>ISSN: 0020-7519</identifier><identifier>EISSN: 1879-0135</identifier><identifier>DOI: 10.1016/j.ijpara.2011.01.009</identifier><identifier>PMID: 21329691</identifier><identifier>CODEN: IJPYBT</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Abbreviated life cycle ; Animals ; Biological and medical sciences ; body cavities ; body condition ; Conditional strategies ; egg production ; encystment ; experimental diets ; fish ; Fishes - parasitology ; Fundamental and applied biological sciences. Psychology ; gonads ; intermediate hosts ; Invertebrates ; Life Cycle Stages ; Life cycle. Host-agent relationship. Pathogenesis ; Longevity ; Marine ; Nemathelminthia. Plathelmintha ; parasites ; probability ; Progenesis ; Protozoa ; selfing ; Stegodexamene anguillae ; Temperature ; Trematoda ; Trematoda - growth & development ; Trematoda - physiology ; Trematoda - radiation effects ; Trematode ; water temperature</subject><ispartof>International journal for parasitology, 2011-05, Vol.41 (6), p.697-704</ispartof><rights>2011 Australian Society for Parasitology Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-c5c9b2e51b9a6a8986e759bf40e1ce0758fa10b6dae024e90ee01a55529e35cb3</citedby><cites>FETCH-LOGICAL-c447t-c5c9b2e51b9a6a8986e759bf40e1ce0758fa10b6dae024e90ee01a55529e35cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpara.2011.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24122484$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21329691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrmann, Kristin K.</creatorcontrib><creatorcontrib>Poulin, Robert</creatorcontrib><title>Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity?</title><title>International journal for parasitology</title><addtitle>Int J Parasitol</addtitle><description>[Display omitted]
► Encystment site and temperature affect parasite reproductive strategies. ► High temperature may indicate lowered host longevity and narrow transmission window. Parasites adjust development strategies in response to cues related to transmission. ► Adaptive plasticity in parasite development is greater than previously thought.
The typical three-host life cycle of most trematodes creates transmission challenges for which a variety of adaptations have evolved to increase the probability of transmission. Some species can abbreviate their life cycle via progenesis, the precocious maturation of the parasite in the second intermediate host resulting in the production of eggs through self-fertilisation without requiring a definitive host. Adoption of the progenetic life cycle may be a conditional strategy in response to different environmental cues related to low probability of transmission to the definitive host. Using high water temperature and/or limited diet as experimental stressors, we tested the effect of body condition and life span of the fish second intermediate host on facultative truncation of the typical three-host life cycle by progenesis in Stegodexamene anguillae. The results suggest that environmental cues, such as temperature and encystment site, may signal transmission opportunities to the parasite so that it may adjust its developmental strategy accordingly. Indeed, a greater proportion of worms became progenetic at higher temperatures, and progenesis was more common among worms encysted in the gonads or body cavity of their fish hosts than among those in other host tissues. These findings highlight the often unrecognised plasticity in parasite developmental and transmission strategies.</description><subject>Abbreviated life cycle</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>body cavities</subject><subject>body condition</subject><subject>Conditional strategies</subject><subject>egg production</subject><subject>encystment</subject><subject>experimental diets</subject><subject>fish</subject><subject>Fishes - parasitology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gonads</subject><subject>intermediate hosts</subject><subject>Invertebrates</subject><subject>Life Cycle Stages</subject><subject>Life cycle. Host-agent relationship. Pathogenesis</subject><subject>Longevity</subject><subject>Marine</subject><subject>Nemathelminthia. Plathelmintha</subject><subject>parasites</subject><subject>probability</subject><subject>Progenesis</subject><subject>Protozoa</subject><subject>selfing</subject><subject>Stegodexamene anguillae</subject><subject>Temperature</subject><subject>Trematoda</subject><subject>Trematoda - growth & development</subject><subject>Trematoda - physiology</subject><subject>Trematoda - radiation effects</subject><subject>Trematode</subject><subject>water temperature</subject><issn>0020-7519</issn><issn>1879-0135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVGL1DAQx4N4eOvpNxDti_jUdZImbeKDIqfeCQs-6L0a0nS6m6Vt1iQ92G9vlq76dsLAMMzvPzPMn5AXFNYUaP12v3b7gwlmzYDSNeQA9YisqGxUCbQSj8kKgEHZCKouydMY9wBUVJw_IZeMVkzViq7Iz43rsbBHO2CRwjxZk5yfCjcVJtc4muQ7fFd88hiLndvuMBQJxwMGk-aAmetclmARdz6k3Nz5mIrBT1u8d-n44Rm56M0Q8fk5X5G7L59_XN-Wm283X68_bkrLeZNKK6xqGQraKlMbqWSNjVBtzwGpRWiE7A2Ftu4MAuOoABGoEUIwhZWwbXVF3ixzD8H_mjEmPbpocRjMhH6OWkFDhYSa_peUdcVZLRuZSb6QNvgYA_b6ENxowlFT0CcL9F4vFuiTBRpygMqyl-cFczti91f05-cZeH0GTLRm6IOZrIv_OE4Z45Jn7tXC9cZrsw2ZufueN_Hso2SCnya9XwjMr713GHS0DieLnQtok-68e_jW3653r-w</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Herrmann, Kristin K.</creator><creator>Poulin, Robert</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20110501</creationdate><title>Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity?</title><author>Herrmann, Kristin K. ; Poulin, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-c5c9b2e51b9a6a8986e759bf40e1ce0758fa10b6dae024e90ee01a55529e35cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abbreviated life cycle</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>body cavities</topic><topic>body condition</topic><topic>Conditional strategies</topic><topic>egg production</topic><topic>encystment</topic><topic>experimental diets</topic><topic>fish</topic><topic>Fishes - parasitology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gonads</topic><topic>intermediate hosts</topic><topic>Invertebrates</topic><topic>Life Cycle Stages</topic><topic>Life cycle. Host-agent relationship. Pathogenesis</topic><topic>Longevity</topic><topic>Marine</topic><topic>Nemathelminthia. Plathelmintha</topic><topic>parasites</topic><topic>probability</topic><topic>Progenesis</topic><topic>Protozoa</topic><topic>selfing</topic><topic>Stegodexamene anguillae</topic><topic>Temperature</topic><topic>Trematoda</topic><topic>Trematoda - growth & development</topic><topic>Trematoda - physiology</topic><topic>Trematoda - radiation effects</topic><topic>Trematode</topic><topic>water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrmann, Kristin K.</creatorcontrib><creatorcontrib>Poulin, Robert</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal for parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrmann, Kristin K.</au><au>Poulin, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity?</atitle><jtitle>International journal for parasitology</jtitle><addtitle>Int J Parasitol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>41</volume><issue>6</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>0020-7519</issn><eissn>1879-0135</eissn><coden>IJPYBT</coden><abstract>[Display omitted]
► Encystment site and temperature affect parasite reproductive strategies. ► High temperature may indicate lowered host longevity and narrow transmission window. Parasites adjust development strategies in response to cues related to transmission. ► Adaptive plasticity in parasite development is greater than previously thought.
The typical three-host life cycle of most trematodes creates transmission challenges for which a variety of adaptations have evolved to increase the probability of transmission. Some species can abbreviate their life cycle via progenesis, the precocious maturation of the parasite in the second intermediate host resulting in the production of eggs through self-fertilisation without requiring a definitive host. Adoption of the progenetic life cycle may be a conditional strategy in response to different environmental cues related to low probability of transmission to the definitive host. Using high water temperature and/or limited diet as experimental stressors, we tested the effect of body condition and life span of the fish second intermediate host on facultative truncation of the typical three-host life cycle by progenesis in Stegodexamene anguillae. The results suggest that environmental cues, such as temperature and encystment site, may signal transmission opportunities to the parasite so that it may adjust its developmental strategy accordingly. Indeed, a greater proportion of worms became progenetic at higher temperatures, and progenesis was more common among worms encysted in the gonads or body cavity of their fish hosts than among those in other host tissues. These findings highlight the often unrecognised plasticity in parasite developmental and transmission strategies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21329691</pmid><doi>10.1016/j.ijpara.2011.01.009</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7519 |
ispartof | International journal for parasitology, 2011-05, Vol.41 (6), p.697-704 |
issn | 0020-7519 1879-0135 |
language | eng |
recordid | cdi_proquest_miscellaneous_907158061 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Abbreviated life cycle Animals Biological and medical sciences body cavities body condition Conditional strategies egg production encystment experimental diets fish Fishes - parasitology Fundamental and applied biological sciences. Psychology gonads intermediate hosts Invertebrates Life Cycle Stages Life cycle. Host-agent relationship. Pathogenesis Longevity Marine Nemathelminthia. Plathelmintha parasites probability Progenesis Protozoa selfing Stegodexamene anguillae Temperature Trematoda Trematoda - growth & development Trematoda - physiology Trematoda - radiation effects Trematode water temperature |
title | Life cycle truncation in a trematode: Does higher temperature indicate shorter host longevity? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20cycle%20truncation%20in%20a%20trematode:%20Does%20higher%20temperature%20indicate%20shorter%20host%20longevity?&rft.jtitle=International%20journal%20for%20parasitology&rft.au=Herrmann,%20Kristin%20K.&rft.date=2011-05-01&rft.volume=41&rft.issue=6&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=0020-7519&rft.eissn=1879-0135&rft.coden=IJPYBT&rft_id=info:doi/10.1016/j.ijpara.2011.01.009&rft_dat=%3Cproquest_cross%3E907158061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863426878&rft_id=info:pmid/21329691&rft_els_id=S0020751911000518&rfr_iscdi=true |