AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice
Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed ade...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular translational research 2011-12, Vol.4 (6), p.801-810 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | 6 |
container_start_page | 801 |
container_title | Journal of cardiovascular translational research |
container_volume | 4 |
creator | Chen, Zhu Chu, Donald Castro-Perez, Jose M. Ni, Weihua Zhang, Aiwu Krsmanovic, Mihajlo L. Xie, Dan Shah, Vinit Stout, Steven J. McLaren, David G. Stefanni, Alice C. Lee, Sang Ho Roddy, Thomas P. Plump, Andrew S. Hubbard, Brian K. Vogt, Thomas F. Zhou, Heather H. |
description | Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed adeno-associated viral vector (AAV) serotype 8 to achieve long-term (32-week) high level expression of human LCAT in hCETP;Ldlr
+/−
mice, and characterized the lipid profiles in detail. The mice had a marked increase in HDL cholesterol, HDL particle size, and significant reduction in low-density lipoprotein (LDL) cholesterol, plasma triglycerides, and plasma apoB. Plasma LCAT activity significantly increased with humanized substrate specificity. HDL cholesteryl esters increased in a fashion that fits human LCAT specificity. HDL phosphatidylcholines trended toward decrease, with no change observed for HDL lysophosphatidylcholines. Triglycerides reduction appeared to reside in all lipoprotein particles (very low-density lipoprotein (VLDL), LDL, and HDL), with HDL triglycerides composition highly reflective of VLDL, suggesting that changes in HDL triglycerides were primarily driven by the altered triglycerides metabolism in VLDL. In summary, in this human-like model for lipoprotein metabolism, AAV8-mediated overexpression of human LCAT resulted in profound changes in plasma lipid profiles. Detailed lipid analyses in the lipoprotein particles suggest that LCAT's beneficial effect on lipid metabolism includes not only enhanced HDL cholesterol esterification but also improved metabolism of apoB-containing particles and triglycerides. Our findings thus shed new light on LCAT’s mechanism of action and lend support to its therapeutic potential in treating dyslipidemia. |
doi_str_mv | 10.1007/s12265-011-9309-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_905678393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>905678393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c26b475dcc12b29e2b851aafcba5bb9f45e376e6d152efb57b980bc6bd01d87f3</originalsourceid><addsrcrecordid>eNp9kE1uFDEQhS1ERELgAGyQdyyQie0et22xGo0GEqmjRGJga_mnPDjqdg_2dERuwJojchI6miTLrKpK9d5T1YfQO0Y_MUrlWWWct4JQxohuqCbqBTphupFENFq8fOqVPEava72htOVUylfomDPFuZSLE5SXyx-KXEJIdg8Bd2Pekg2UAa9_7wrUmsaMx4jPp8Fm3K2WG_wtbXOKydu87-_wxbAr4y1U3KVdCvi6jDH185gy_rlab64_d6EvH8_-_fmLL5OHN-go2r7C24d6ir5_WW9W56S7-nqxWnbEL6jeE89bt5AieM-44xq4U4JZG72zwjkdFwIa2UIbmOAQnZBOK-p86wJlQcnYnKIPh9z5ul8T1L0ZUvXQ9zbDOFWjqWilanQzK9lB6ctYa4FodiUNttwZRs09ZXOgbGbK5p6yUbPn_UP65AYIT45HrLOAHwR1XuUtFHMzTiXPHz-T-h8YVYhR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905678393</pqid></control><display><type>article</type><title>AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Chen, Zhu ; Chu, Donald ; Castro-Perez, Jose M. ; Ni, Weihua ; Zhang, Aiwu ; Krsmanovic, Mihajlo L. ; Xie, Dan ; Shah, Vinit ; Stout, Steven J. ; McLaren, David G. ; Stefanni, Alice C. ; Lee, Sang Ho ; Roddy, Thomas P. ; Plump, Andrew S. ; Hubbard, Brian K. ; Vogt, Thomas F. ; Zhou, Heather H.</creator><creatorcontrib>Chen, Zhu ; Chu, Donald ; Castro-Perez, Jose M. ; Ni, Weihua ; Zhang, Aiwu ; Krsmanovic, Mihajlo L. ; Xie, Dan ; Shah, Vinit ; Stout, Steven J. ; McLaren, David G. ; Stefanni, Alice C. ; Lee, Sang Ho ; Roddy, Thomas P. ; Plump, Andrew S. ; Hubbard, Brian K. ; Vogt, Thomas F. ; Zhou, Heather H.</creatorcontrib><description>Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed adeno-associated viral vector (AAV) serotype 8 to achieve long-term (32-week) high level expression of human LCAT in hCETP;Ldlr
+/−
mice, and characterized the lipid profiles in detail. The mice had a marked increase in HDL cholesterol, HDL particle size, and significant reduction in low-density lipoprotein (LDL) cholesterol, plasma triglycerides, and plasma apoB. Plasma LCAT activity significantly increased with humanized substrate specificity. HDL cholesteryl esters increased in a fashion that fits human LCAT specificity. HDL phosphatidylcholines trended toward decrease, with no change observed for HDL lysophosphatidylcholines. Triglycerides reduction appeared to reside in all lipoprotein particles (very low-density lipoprotein (VLDL), LDL, and HDL), with HDL triglycerides composition highly reflective of VLDL, suggesting that changes in HDL triglycerides were primarily driven by the altered triglycerides metabolism in VLDL. In summary, in this human-like model for lipoprotein metabolism, AAV8-mediated overexpression of human LCAT resulted in profound changes in plasma lipid profiles. Detailed lipid analyses in the lipoprotein particles suggest that LCAT's beneficial effect on lipid metabolism includes not only enhanced HDL cholesterol esterification but also improved metabolism of apoB-containing particles and triglycerides. Our findings thus shed new light on LCAT’s mechanism of action and lend support to its therapeutic potential in treating dyslipidemia.</description><identifier>ISSN: 1937-5387</identifier><identifier>EISSN: 1937-5395</identifier><identifier>DOI: 10.1007/s12265-011-9309-8</identifier><identifier>PMID: 21822774</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cardiology ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Dependovirus - genetics ; Disease Models, Animal ; Dyslipidemias - enzymology ; Dyslipidemias - genetics ; Dyslipidemias - therapy ; Gene Transfer Techniques ; Genetic Therapy ; Genetic Vectors ; Human Genetics ; Humans ; Lipids - blood ; Liver - enzymology ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Particle Size ; Phosphatidylcholine-Sterol O-Acyltransferase - genetics ; Phosphatidylcholine-Sterol O-Acyltransferase - metabolism ; Receptors, LDL - deficiency ; Receptors, LDL - genetics ; Time Factors</subject><ispartof>Journal of cardiovascular translational research, 2011-12, Vol.4 (6), p.801-810</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c26b475dcc12b29e2b851aafcba5bb9f45e376e6d152efb57b980bc6bd01d87f3</citedby><cites>FETCH-LOGICAL-c409t-c26b475dcc12b29e2b851aafcba5bb9f45e376e6d152efb57b980bc6bd01d87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12265-011-9309-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12265-011-9309-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21822774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chu, Donald</creatorcontrib><creatorcontrib>Castro-Perez, Jose M.</creatorcontrib><creatorcontrib>Ni, Weihua</creatorcontrib><creatorcontrib>Zhang, Aiwu</creatorcontrib><creatorcontrib>Krsmanovic, Mihajlo L.</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Shah, Vinit</creatorcontrib><creatorcontrib>Stout, Steven J.</creatorcontrib><creatorcontrib>McLaren, David G.</creatorcontrib><creatorcontrib>Stefanni, Alice C.</creatorcontrib><creatorcontrib>Lee, Sang Ho</creatorcontrib><creatorcontrib>Roddy, Thomas P.</creatorcontrib><creatorcontrib>Plump, Andrew S.</creatorcontrib><creatorcontrib>Hubbard, Brian K.</creatorcontrib><creatorcontrib>Vogt, Thomas F.</creatorcontrib><creatorcontrib>Zhou, Heather H.</creatorcontrib><title>AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice</title><title>Journal of cardiovascular translational research</title><addtitle>J. of Cardiovasc. Trans. Res</addtitle><addtitle>J Cardiovasc Transl Res</addtitle><description>Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed adeno-associated viral vector (AAV) serotype 8 to achieve long-term (32-week) high level expression of human LCAT in hCETP;Ldlr
+/−
mice, and characterized the lipid profiles in detail. The mice had a marked increase in HDL cholesterol, HDL particle size, and significant reduction in low-density lipoprotein (LDL) cholesterol, plasma triglycerides, and plasma apoB. Plasma LCAT activity significantly increased with humanized substrate specificity. HDL cholesteryl esters increased in a fashion that fits human LCAT specificity. HDL phosphatidylcholines trended toward decrease, with no change observed for HDL lysophosphatidylcholines. Triglycerides reduction appeared to reside in all lipoprotein particles (very low-density lipoprotein (VLDL), LDL, and HDL), with HDL triglycerides composition highly reflective of VLDL, suggesting that changes in HDL triglycerides were primarily driven by the altered triglycerides metabolism in VLDL. In summary, in this human-like model for lipoprotein metabolism, AAV8-mediated overexpression of human LCAT resulted in profound changes in plasma lipid profiles. Detailed lipid analyses in the lipoprotein particles suggest that LCAT's beneficial effect on lipid metabolism includes not only enhanced HDL cholesterol esterification but also improved metabolism of apoB-containing particles and triglycerides. Our findings thus shed new light on LCAT’s mechanism of action and lend support to its therapeutic potential in treating dyslipidemia.</description><subject>Animals</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Disease Models, Animal</subject><subject>Dyslipidemias - enzymology</subject><subject>Dyslipidemias - genetics</subject><subject>Dyslipidemias - therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Lipids - blood</subject><subject>Liver - enzymology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Particle Size</subject><subject>Phosphatidylcholine-Sterol O-Acyltransferase - genetics</subject><subject>Phosphatidylcholine-Sterol O-Acyltransferase - metabolism</subject><subject>Receptors, LDL - deficiency</subject><subject>Receptors, LDL - genetics</subject><subject>Time Factors</subject><issn>1937-5387</issn><issn>1937-5395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1uFDEQhS1ERELgAGyQdyyQie0et22xGo0GEqmjRGJga_mnPDjqdg_2dERuwJojchI6miTLrKpK9d5T1YfQO0Y_MUrlWWWct4JQxohuqCbqBTphupFENFq8fOqVPEava72htOVUylfomDPFuZSLE5SXyx-KXEJIdg8Bd2Pekg2UAa9_7wrUmsaMx4jPp8Fm3K2WG_wtbXOKydu87-_wxbAr4y1U3KVdCvi6jDH185gy_rlab64_d6EvH8_-_fmLL5OHN-go2r7C24d6ir5_WW9W56S7-nqxWnbEL6jeE89bt5AieM-44xq4U4JZG72zwjkdFwIa2UIbmOAQnZBOK-p86wJlQcnYnKIPh9z5ul8T1L0ZUvXQ9zbDOFWjqWilanQzK9lB6ctYa4FodiUNttwZRs09ZXOgbGbK5p6yUbPn_UP65AYIT45HrLOAHwR1XuUtFHMzTiXPHz-T-h8YVYhR</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chen, Zhu</creator><creator>Chu, Donald</creator><creator>Castro-Perez, Jose M.</creator><creator>Ni, Weihua</creator><creator>Zhang, Aiwu</creator><creator>Krsmanovic, Mihajlo L.</creator><creator>Xie, Dan</creator><creator>Shah, Vinit</creator><creator>Stout, Steven J.</creator><creator>McLaren, David G.</creator><creator>Stefanni, Alice C.</creator><creator>Lee, Sang Ho</creator><creator>Roddy, Thomas P.</creator><creator>Plump, Andrew S.</creator><creator>Hubbard, Brian K.</creator><creator>Vogt, Thomas F.</creator><creator>Zhou, Heather H.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice</title><author>Chen, Zhu ; Chu, Donald ; Castro-Perez, Jose M. ; Ni, Weihua ; Zhang, Aiwu ; Krsmanovic, Mihajlo L. ; Xie, Dan ; Shah, Vinit ; Stout, Steven J. ; McLaren, David G. ; Stefanni, Alice C. ; Lee, Sang Ho ; Roddy, Thomas P. ; Plump, Andrew S. ; Hubbard, Brian K. ; Vogt, Thomas F. ; Zhou, Heather H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c26b475dcc12b29e2b851aafcba5bb9f45e376e6d152efb57b980bc6bd01d87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Disease Models, Animal</topic><topic>Dyslipidemias - enzymology</topic><topic>Dyslipidemias - genetics</topic><topic>Dyslipidemias - therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Lipids - blood</topic><topic>Liver - enzymology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Particle Size</topic><topic>Phosphatidylcholine-Sterol O-Acyltransferase - genetics</topic><topic>Phosphatidylcholine-Sterol O-Acyltransferase - metabolism</topic><topic>Receptors, LDL - deficiency</topic><topic>Receptors, LDL - genetics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Chu, Donald</creatorcontrib><creatorcontrib>Castro-Perez, Jose M.</creatorcontrib><creatorcontrib>Ni, Weihua</creatorcontrib><creatorcontrib>Zhang, Aiwu</creatorcontrib><creatorcontrib>Krsmanovic, Mihajlo L.</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Shah, Vinit</creatorcontrib><creatorcontrib>Stout, Steven J.</creatorcontrib><creatorcontrib>McLaren, David G.</creatorcontrib><creatorcontrib>Stefanni, Alice C.</creatorcontrib><creatorcontrib>Lee, Sang Ho</creatorcontrib><creatorcontrib>Roddy, Thomas P.</creatorcontrib><creatorcontrib>Plump, Andrew S.</creatorcontrib><creatorcontrib>Hubbard, Brian K.</creatorcontrib><creatorcontrib>Vogt, Thomas F.</creatorcontrib><creatorcontrib>Zhou, Heather H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular translational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhu</au><au>Chu, Donald</au><au>Castro-Perez, Jose M.</au><au>Ni, Weihua</au><au>Zhang, Aiwu</au><au>Krsmanovic, Mihajlo L.</au><au>Xie, Dan</au><au>Shah, Vinit</au><au>Stout, Steven J.</au><au>McLaren, David G.</au><au>Stefanni, Alice C.</au><au>Lee, Sang Ho</au><au>Roddy, Thomas P.</au><au>Plump, Andrew S.</au><au>Hubbard, Brian K.</au><au>Vogt, Thomas F.</au><au>Zhou, Heather H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice</atitle><jtitle>Journal of cardiovascular translational research</jtitle><stitle>J. of Cardiovasc. Trans. Res</stitle><addtitle>J Cardiovasc Transl Res</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>4</volume><issue>6</issue><spage>801</spage><epage>810</epage><pages>801-810</pages><issn>1937-5387</issn><eissn>1937-5395</eissn><abstract>Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed adeno-associated viral vector (AAV) serotype 8 to achieve long-term (32-week) high level expression of human LCAT in hCETP;Ldlr
+/−
mice, and characterized the lipid profiles in detail. The mice had a marked increase in HDL cholesterol, HDL particle size, and significant reduction in low-density lipoprotein (LDL) cholesterol, plasma triglycerides, and plasma apoB. Plasma LCAT activity significantly increased with humanized substrate specificity. HDL cholesteryl esters increased in a fashion that fits human LCAT specificity. HDL phosphatidylcholines trended toward decrease, with no change observed for HDL lysophosphatidylcholines. Triglycerides reduction appeared to reside in all lipoprotein particles (very low-density lipoprotein (VLDL), LDL, and HDL), with HDL triglycerides composition highly reflective of VLDL, suggesting that changes in HDL triglycerides were primarily driven by the altered triglycerides metabolism in VLDL. In summary, in this human-like model for lipoprotein metabolism, AAV8-mediated overexpression of human LCAT resulted in profound changes in plasma lipid profiles. Detailed lipid analyses in the lipoprotein particles suggest that LCAT's beneficial effect on lipid metabolism includes not only enhanced HDL cholesterol esterification but also improved metabolism of apoB-containing particles and triglycerides. Our findings thus shed new light on LCAT’s mechanism of action and lend support to its therapeutic potential in treating dyslipidemia.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21822774</pmid><doi>10.1007/s12265-011-9309-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-5387 |
ispartof | Journal of cardiovascular translational research, 2011-12, Vol.4 (6), p.801-810 |
issn | 1937-5387 1937-5395 |
language | eng |
recordid | cdi_proquest_miscellaneous_905678393 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Biomedical Engineering and Bioengineering Biomedicine Cardiology Cholesterol Ester Transfer Proteins - genetics Cholesterol Ester Transfer Proteins - metabolism Dependovirus - genetics Disease Models, Animal Dyslipidemias - enzymology Dyslipidemias - genetics Dyslipidemias - therapy Gene Transfer Techniques Genetic Therapy Genetic Vectors Human Genetics Humans Lipids - blood Liver - enzymology Male Medicine Medicine & Public Health Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Particle Size Phosphatidylcholine-Sterol O-Acyltransferase - genetics Phosphatidylcholine-Sterol O-Acyltransferase - metabolism Receptors, LDL - deficiency Receptors, LDL - genetics Time Factors |
title | AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAV8-Mediated%20Long-Term%20Expression%20of%20Human%20LCAT%20Significantly%20Improves%20Lipid%20Profiles%20in%20hCETP;Ldlr+/%E2%88%92%20Mice&rft.jtitle=Journal%20of%20cardiovascular%20translational%20research&rft.au=Chen,%20Zhu&rft.date=2011-12-01&rft.volume=4&rft.issue=6&rft.spage=801&rft.epage=810&rft.pages=801-810&rft.issn=1937-5387&rft.eissn=1937-5395&rft_id=info:doi/10.1007/s12265-011-9309-8&rft_dat=%3Cproquest_cross%3E905678393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905678393&rft_id=info:pmid/21822774&rfr_iscdi=true |