Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise
The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G z axis ( a g ) ranging from 0 to 3 g . To this aim, we combined data from...
Gespeichert in:
Veröffentlicht in: | European journal of applied physiology 2011-12, Vol.111 (12), p.2907-2917 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2917 |
---|---|
container_issue | 12 |
container_start_page | 2907 |
container_title | European journal of applied physiology |
container_volume | 111 |
creator | Bonjour, Julien Bringard, Aurélien Antonutto, Guglielmo Capelli, Carlo Linnarsson, Dag Pendergast, David R. Ferretti, Guido |
description | The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G
z
axis (
a
g
) ranging from 0 to 3
g
. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with
a
g
. In contrast, heart rate increased non-linearly with
a
g
, whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and
a
g
was described by a fourth power regression equation. Mean arterial pressure increased with
a
g
non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with
a
g
. These data led to predict that maximal oxygen consumption would decrease drastically as
a
g
is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when
a
g
is around 4.5
g
, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System. |
doi_str_mv | 10.1007/s00421-011-1917-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_905674693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>905674693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3310-95d79ae31f62e49c4452a0ced02cdac511f31ba1b0b2ffa8dfb74664ec8e546e3</originalsourceid><addsrcrecordid>eNp9kMtKxTAQhoMoXo4-gBvJRlxVZ9L0thTxBoIbXYc0nWilTY5JC-rTm8M56s5VBub7J_wfY8cI5whQXUQAKTADxAwbrDLYYvso8yYrc1Ft_87Y7LGDGN8AoBZY77I9kTZVCXKfPV9bS2aK3FuujaGBgp5673jv-PRK_PaL648-rR1_nUftuNGh6_1yHkbvdPjkgeLSu0iRT57TBwXTRzpkO1YPkY4274I931w_Xd1lD4-391eXD5nJc4SsKbqq0ZSjLQXJxkhZCA2GOhCm06ZAtDm2GltohbW67mxbybKUZGoqZEn5gp2t7y6Df58pTmrsYyoxaEd-jqqBokyJJk8krkkTfIyBrFqGfkwFFIJayVRrmSrJVCuZClLmZHN9bkfqfhM_9hJwugF0NHqwQbvU_o-TVV0AlokTay6mlXuhoN78HFwy88_v398GjNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905674693</pqid></control><display><type>article</type><title>Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bonjour, Julien ; Bringard, Aurélien ; Antonutto, Guglielmo ; Capelli, Carlo ; Linnarsson, Dag ; Pendergast, David R. ; Ferretti, Guido</creator><creatorcontrib>Bonjour, Julien ; Bringard, Aurélien ; Antonutto, Guglielmo ; Capelli, Carlo ; Linnarsson, Dag ; Pendergast, David R. ; Ferretti, Guido</creatorcontrib><description>The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G
z
axis (
a
g
) ranging from 0 to 3
g
. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with
a
g
. In contrast, heart rate increased non-linearly with
a
g
, whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and
a
g
was described by a fourth power regression equation. Mean arterial pressure increased with
a
g
non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with
a
g
. These data led to predict that maximal oxygen consumption would decrease drastically as
a
g
is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when
a
g
is around 4.5
g
, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-011-1917-0</identifier><identifier>PMID: 21437604</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acceleration ; Adult ; Astronauts ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Blood Pressure - physiology ; Cardiac Output - physiology ; Exercise - physiology ; Exercise Test - methods ; Fundamental and applied biological sciences. Psychology ; Gravitation ; Heart - physiology ; Heart Rate - physiology ; Human Physiology ; Humans ; Lung - physiology ; Male ; Occupational Medicine/Industrial Medicine ; Original Article ; Oxygen Consumption - physiology ; Space Flight ; Sports Medicine ; Stroke Volume - physiology ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><ispartof>European journal of applied physiology, 2011-12, Vol.111 (12), p.2907-2917</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3310-95d79ae31f62e49c4452a0ced02cdac511f31ba1b0b2ffa8dfb74664ec8e546e3</citedby><cites>FETCH-LOGICAL-c3310-95d79ae31f62e49c4452a0ced02cdac511f31ba1b0b2ffa8dfb74664ec8e546e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-011-1917-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-011-1917-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24785016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21437604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonjour, Julien</creatorcontrib><creatorcontrib>Bringard, Aurélien</creatorcontrib><creatorcontrib>Antonutto, Guglielmo</creatorcontrib><creatorcontrib>Capelli, Carlo</creatorcontrib><creatorcontrib>Linnarsson, Dag</creatorcontrib><creatorcontrib>Pendergast, David R.</creatorcontrib><creatorcontrib>Ferretti, Guido</creatorcontrib><title>Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G
z
axis (
a
g
) ranging from 0 to 3
g
. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with
a
g
. In contrast, heart rate increased non-linearly with
a
g
, whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and
a
g
was described by a fourth power regression equation. Mean arterial pressure increased with
a
g
non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with
a
g
. These data led to predict that maximal oxygen consumption would decrease drastically as
a
g
is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when
a
g
is around 4.5
g
, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.</description><subject>Acceleration</subject><subject>Adult</subject><subject>Astronauts</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood Pressure - physiology</subject><subject>Cardiac Output - physiology</subject><subject>Exercise - physiology</subject><subject>Exercise Test - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gravitation</subject><subject>Heart - physiology</subject><subject>Heart Rate - physiology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Lung - physiology</subject><subject>Male</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Oxygen Consumption - physiology</subject><subject>Space Flight</subject><subject>Sports Medicine</subject><subject>Stroke Volume - physiology</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxTAQhoMoXo4-gBvJRlxVZ9L0thTxBoIbXYc0nWilTY5JC-rTm8M56s5VBub7J_wfY8cI5whQXUQAKTADxAwbrDLYYvso8yYrc1Ft_87Y7LGDGN8AoBZY77I9kTZVCXKfPV9bS2aK3FuujaGBgp5673jv-PRK_PaL648-rR1_nUftuNGh6_1yHkbvdPjkgeLSu0iRT57TBwXTRzpkO1YPkY4274I931w_Xd1lD4-391eXD5nJc4SsKbqq0ZSjLQXJxkhZCA2GOhCm06ZAtDm2GltohbW67mxbybKUZGoqZEn5gp2t7y6Df58pTmrsYyoxaEd-jqqBokyJJk8krkkTfIyBrFqGfkwFFIJayVRrmSrJVCuZClLmZHN9bkfqfhM_9hJwugF0NHqwQbvU_o-TVV0AlokTay6mlXuhoN78HFwy88_v398GjNQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Bonjour, Julien</creator><creator>Bringard, Aurélien</creator><creator>Antonutto, Guglielmo</creator><creator>Capelli, Carlo</creator><creator>Linnarsson, Dag</creator><creator>Pendergast, David R.</creator><creator>Ferretti, Guido</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise</title><author>Bonjour, Julien ; Bringard, Aurélien ; Antonutto, Guglielmo ; Capelli, Carlo ; Linnarsson, Dag ; Pendergast, David R. ; Ferretti, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3310-95d79ae31f62e49c4452a0ced02cdac511f31ba1b0b2ffa8dfb74664ec8e546e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration</topic><topic>Adult</topic><topic>Astronauts</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood Pressure - physiology</topic><topic>Cardiac Output - physiology</topic><topic>Exercise - physiology</topic><topic>Exercise Test - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gravitation</topic><topic>Heart - physiology</topic><topic>Heart Rate - physiology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Lung - physiology</topic><topic>Male</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Oxygen Consumption - physiology</topic><topic>Space Flight</topic><topic>Sports Medicine</topic><topic>Stroke Volume - physiology</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonjour, Julien</creatorcontrib><creatorcontrib>Bringard, Aurélien</creatorcontrib><creatorcontrib>Antonutto, Guglielmo</creatorcontrib><creatorcontrib>Capelli, Carlo</creatorcontrib><creatorcontrib>Linnarsson, Dag</creatorcontrib><creatorcontrib>Pendergast, David R.</creatorcontrib><creatorcontrib>Ferretti, Guido</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonjour, Julien</au><au>Bringard, Aurélien</au><au>Antonutto, Guglielmo</au><au>Capelli, Carlo</au><au>Linnarsson, Dag</au><au>Pendergast, David R.</au><au>Ferretti, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2011-12</date><risdate>2011</risdate><volume>111</volume><issue>12</issue><spage>2907</spage><epage>2917</epage><pages>2907-2917</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G
z
axis (
a
g
) ranging from 0 to 3
g
. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with
a
g
. In contrast, heart rate increased non-linearly with
a
g
, whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and
a
g
was described by a fourth power regression equation. Mean arterial pressure increased with
a
g
non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with
a
g
. These data led to predict that maximal oxygen consumption would decrease drastically as
a
g
is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when
a
g
is around 4.5
g
, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21437604</pmid><doi>10.1007/s00421-011-1917-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-6319 |
ispartof | European journal of applied physiology, 2011-12, Vol.111 (12), p.2907-2917 |
issn | 1439-6319 1439-6327 |
language | eng |
recordid | cdi_proquest_miscellaneous_905674693 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acceleration Adult Astronauts Biological and medical sciences Biomedical and Life Sciences Biomedicine Blood Pressure - physiology Cardiac Output - physiology Exercise - physiology Exercise Test - methods Fundamental and applied biological sciences. Psychology Gravitation Heart - physiology Heart Rate - physiology Human Physiology Humans Lung - physiology Male Occupational Medicine/Industrial Medicine Original Article Oxygen Consumption - physiology Space Flight Sports Medicine Stroke Volume - physiology Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports |
title | Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20acceleration%20in%20the%20Gz%20axis%20on%20human%20cardiopulmonary%20responses%20to%20exercise&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Bonjour,%20Julien&rft.date=2011-12&rft.volume=111&rft.issue=12&rft.spage=2907&rft.epage=2917&rft.pages=2907-2917&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-011-1917-0&rft_dat=%3Cproquest_cross%3E905674693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905674693&rft_id=info:pmid/21437604&rfr_iscdi=true |