Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression

The coordination assembly of 1,3,5-trispyridylbenzene with Cu on a Au(111) surface has been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. An open two-dimensional (2D) metal–organic network of honeycomb structure is formed as the 2D network covers partial surface. U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-11, Vol.133 (46), p.18760-18766
Hauptverfasser: Liu, Jun, Lin, Tao, Shi, Ziliang, Xia, Fei, Dong, Lei, Liu, Pei Nian, Lin, Nian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18766
container_issue 46
container_start_page 18760
container_title Journal of the American Chemical Society
container_volume 133
creator Liu, Jun
Lin, Tao
Shi, Ziliang
Xia, Fei
Dong, Lei
Liu, Pei Nian
Lin, Nian
description The coordination assembly of 1,3,5-trispyridylbenzene with Cu on a Au(111) surface has been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. An open two-dimensional (2D) metal–organic network of honeycomb structure is formed as the 2D network covers partial surface. Upon the 2D network coverage of the entire surface, further increment of molecular density on the surface results in a multistep nonreversible structural transformation in the self-assembly. The new phases consist of metal–organic networks of pentagonal, rhombic, zigzag, and eventually triangular structures. In addition to the structural change, the coordination configuration also undergoes a change from the two-fold Cu–pyridyl binding in the honeycomb, pentagonal, rhombic and zigzag structures to the three-fold Cu–pyridyl coordination in the triangular structure. As the increment of molecular packing density on the surface builds up intrinsic in-plane compression pressure in the 2D space, the transformation of the structure, as well as the coordination binding mode, is attributed to the in-plane compression pressure. The quantitative structural analysis of the various phases upon molecular density increment allows us to construct a phase diagram of network structures as a function of the in-plane compression.
doi_str_mv 10.1021/ja2056193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_905670894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>905670894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-11bf090e418ec9caca1ad85c92c7f92de9ffe76398842d804ea23732c4d83f2f3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMotlYXvoDMRsTFaC5zSZbSeilUK1jXQ5pJJHVmUpOMpbjxHXxDn8SUqa5cnQvf-Tl8ABwjeIEgRpcLjmGaIUZ2QB-lGMYpwtku6EMIcZzTjPTAgXOLMCaYon3Qw4jRFGWkDz6evG2Fby2vopnljVPG1txr00RGRbOViUe6lo0Li0DcS8-r78-vqX3hjRbR0Bhb6qbjH6RfGfvqopHV77KJ5uto3Hirw7EIXfxY8UaGk3pppdsEHoI9xSsnj7Z1AJ5vrmfDu3gyvR0PryYxJxT6GKG5ggzKBFEpmOCCI17SVDAscsVwKZlSMs8IozTBJYWJ5JjkBIukpERhRQbgrMtdWvPWSueLWjshq80_pnUFC_JySFkSyPOOFNY4Z6UqllbX3K4LBIuN6uJPdWBPtqntvJblH_nrNgCnHcCFKxamtcGg-yfoB0fiiAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905670894</pqid></control><display><type>article</type><title>Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression</title><source>ACS Publications</source><creator>Liu, Jun ; Lin, Tao ; Shi, Ziliang ; Xia, Fei ; Dong, Lei ; Liu, Pei Nian ; Lin, Nian</creator><creatorcontrib>Liu, Jun ; Lin, Tao ; Shi, Ziliang ; Xia, Fei ; Dong, Lei ; Liu, Pei Nian ; Lin, Nian</creatorcontrib><description>The coordination assembly of 1,3,5-trispyridylbenzene with Cu on a Au(111) surface has been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. An open two-dimensional (2D) metal–organic network of honeycomb structure is formed as the 2D network covers partial surface. Upon the 2D network coverage of the entire surface, further increment of molecular density on the surface results in a multistep nonreversible structural transformation in the self-assembly. The new phases consist of metal–organic networks of pentagonal, rhombic, zigzag, and eventually triangular structures. In addition to the structural change, the coordination configuration also undergoes a change from the two-fold Cu–pyridyl binding in the honeycomb, pentagonal, rhombic and zigzag structures to the three-fold Cu–pyridyl coordination in the triangular structure. As the increment of molecular packing density on the surface builds up intrinsic in-plane compression pressure in the 2D space, the transformation of the structure, as well as the coordination binding mode, is attributed to the in-plane compression pressure. The quantitative structural analysis of the various phases upon molecular density increment allows us to construct a phase diagram of network structures as a function of the in-plane compression.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2056193</identifier><identifier>PMID: 21985163</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2011-11, Vol.133 (46), p.18760-18766</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-11bf090e418ec9caca1ad85c92c7f92de9ffe76398842d804ea23732c4d83f2f3</citedby><cites>FETCH-LOGICAL-a380t-11bf090e418ec9caca1ad85c92c7f92de9ffe76398842d804ea23732c4d83f2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2056193$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2056193$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21985163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Shi, Ziliang</creatorcontrib><creatorcontrib>Xia, Fei</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Liu, Pei Nian</creatorcontrib><creatorcontrib>Lin, Nian</creatorcontrib><title>Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The coordination assembly of 1,3,5-trispyridylbenzene with Cu on a Au(111) surface has been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. An open two-dimensional (2D) metal–organic network of honeycomb structure is formed as the 2D network covers partial surface. Upon the 2D network coverage of the entire surface, further increment of molecular density on the surface results in a multistep nonreversible structural transformation in the self-assembly. The new phases consist of metal–organic networks of pentagonal, rhombic, zigzag, and eventually triangular structures. In addition to the structural change, the coordination configuration also undergoes a change from the two-fold Cu–pyridyl binding in the honeycomb, pentagonal, rhombic and zigzag structures to the three-fold Cu–pyridyl coordination in the triangular structure. As the increment of molecular packing density on the surface builds up intrinsic in-plane compression pressure in the 2D space, the transformation of the structure, as well as the coordination binding mode, is attributed to the in-plane compression pressure. The quantitative structural analysis of the various phases upon molecular density increment allows us to construct a phase diagram of network structures as a function of the in-plane compression.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMotlYXvoDMRsTFaC5zSZbSeilUK1jXQ5pJJHVmUpOMpbjxHXxDn8SUqa5cnQvf-Tl8ABwjeIEgRpcLjmGaIUZ2QB-lGMYpwtku6EMIcZzTjPTAgXOLMCaYon3Qw4jRFGWkDz6evG2Fby2vopnljVPG1txr00RGRbOViUe6lo0Li0DcS8-r78-vqX3hjRbR0Bhb6qbjH6RfGfvqopHV77KJ5uto3Hirw7EIXfxY8UaGk3pppdsEHoI9xSsnj7Z1AJ5vrmfDu3gyvR0PryYxJxT6GKG5ggzKBFEpmOCCI17SVDAscsVwKZlSMs8IozTBJYWJ5JjkBIukpERhRQbgrMtdWvPWSueLWjshq80_pnUFC_JySFkSyPOOFNY4Z6UqllbX3K4LBIuN6uJPdWBPtqntvJblH_nrNgCnHcCFKxamtcGg-yfoB0fiiAc</recordid><startdate>20111123</startdate><enddate>20111123</enddate><creator>Liu, Jun</creator><creator>Lin, Tao</creator><creator>Shi, Ziliang</creator><creator>Xia, Fei</creator><creator>Dong, Lei</creator><creator>Liu, Pei Nian</creator><creator>Lin, Nian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111123</creationdate><title>Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression</title><author>Liu, Jun ; Lin, Tao ; Shi, Ziliang ; Xia, Fei ; Dong, Lei ; Liu, Pei Nian ; Lin, Nian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-11bf090e418ec9caca1ad85c92c7f92de9ffe76398842d804ea23732c4d83f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Shi, Ziliang</creatorcontrib><creatorcontrib>Xia, Fei</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Liu, Pei Nian</creatorcontrib><creatorcontrib>Lin, Nian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun</au><au>Lin, Tao</au><au>Shi, Ziliang</au><au>Xia, Fei</au><au>Dong, Lei</au><au>Liu, Pei Nian</au><au>Lin, Nian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-11-23</date><risdate>2011</risdate><volume>133</volume><issue>46</issue><spage>18760</spage><epage>18766</epage><pages>18760-18766</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The coordination assembly of 1,3,5-trispyridylbenzene with Cu on a Au(111) surface has been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. An open two-dimensional (2D) metal–organic network of honeycomb structure is formed as the 2D network covers partial surface. Upon the 2D network coverage of the entire surface, further increment of molecular density on the surface results in a multistep nonreversible structural transformation in the self-assembly. The new phases consist of metal–organic networks of pentagonal, rhombic, zigzag, and eventually triangular structures. In addition to the structural change, the coordination configuration also undergoes a change from the two-fold Cu–pyridyl binding in the honeycomb, pentagonal, rhombic and zigzag structures to the three-fold Cu–pyridyl coordination in the triangular structure. As the increment of molecular packing density on the surface builds up intrinsic in-plane compression pressure in the 2D space, the transformation of the structure, as well as the coordination binding mode, is attributed to the in-plane compression pressure. The quantitative structural analysis of the various phases upon molecular density increment allows us to construct a phase diagram of network structures as a function of the in-plane compression.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21985163</pmid><doi>10.1021/ja2056193</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-11, Vol.133 (46), p.18760-18766
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_905670894
source ACS Publications
title Structural Transformation of Two-Dimensional Metal–Organic Coordination Networks Driven by Intrinsic In-Plane Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Transformation%20of%20Two-Dimensional%20Metal%E2%80%93Organic%20Coordination%20Networks%20Driven%20by%20Intrinsic%20In-Plane%20Compression&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Liu,%20Jun&rft.date=2011-11-23&rft.volume=133&rft.issue=46&rft.spage=18760&rft.epage=18766&rft.pages=18760-18766&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2056193&rft_dat=%3Cproquest_cross%3E905670894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905670894&rft_id=info:pmid/21985163&rfr_iscdi=true