Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction

Background: Mitochondria are the main sites for fatty acid oxidation and play a central role in lipotoxicity and nonalcoholic steatohepatitis. Aims: We investigated whether carnitine prevents free fatty acid (FFA)‐induced lipotoxicity in vitro and in vivo. Methods: HepG2 cells were incubated with FF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Liver international 2011-10, Vol.31 (9), p.1315-1324
Hauptverfasser: Jun, Dae Won, Cho, Won Kyeong, Jun, Jin Hyun, Kwon, Hyuk Jin, Jang, Ki-Seok, Kim, Hyun-Jeong, Jeon, Hye Jun, Lee, Kang Nyeong, Lee, Hang Lak, Lee, Oh Young, Yoon, Byung Chul, Choi, Ho Soon, Hahm, Joon Soo, Lee, Min Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324
container_issue 9
container_start_page 1315
container_title Liver international
container_volume 31
creator Jun, Dae Won
Cho, Won Kyeong
Jun, Jin Hyun
Kwon, Hyuk Jin
Jang, Ki-Seok
Kim, Hyun-Jeong
Jeon, Hye Jun
Lee, Kang Nyeong
Lee, Hang Lak
Lee, Oh Young
Yoon, Byung Chul
Choi, Ho Soon
Hahm, Joon Soo
Lee, Min Ho
description Background: Mitochondria are the main sites for fatty acid oxidation and play a central role in lipotoxicity and nonalcoholic steatohepatitis. Aims: We investigated whether carnitine prevents free fatty acid (FFA)‐induced lipotoxicity in vitro and in vivo. Methods: HepG2 cells were incubated with FFA, along with carnitine and carnitine complexes. Mitochondrial β‐oxidation, transmembrane potential, intracellular ATP levels and changes in mitochondrial copy number and morphology were analysed. Otsuka Long‐Evans Tokushima Fatty and Long‐Evans Tokushima Otsuka rats were segregated into three experimental groups and fed for 8 weeks with (i) normal chow, (ii) a methionine choline‐deficient (MCD) diet or (iii) an l‐carnitine‐supplemented MCD diet. Results: Carnitine prevented FFA‐induced apoptosis (16% vs. 3%, P 
doi_str_mv 10.1111/j.1478-3231.2011.02602.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_905669861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>905669861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5222-2c618e70f01fd902be8952fe434c409ab8536d2495203e9f8d21c8a3197da5b63</originalsourceid><addsrcrecordid>eNqNkE9v1DAQxS1ERUvhKyDfOCX4T-LEBw6olNJqaYsE9Gg59lj1ko23tlM2374JW_bMXGY0894b6YcQpqSkc31Yl7Rq2oIzTktGKC0JE4SVuxfo5HB4eZgZP0avU1oTQqWs6St0zBiRvKqrE_RwG-ERhuzDgIPDLgJgp3OesDbeFn6wowGL72Grsze499uQw84bPyu6CRsdB5_9APjRa7xExaT7JWnjczD3YbDRzws7JTcOZnnzBh053Sd4-9xP0c8v5z_Ovharm4vLs0-rwtSMsYIZQVtoiCPUWUlYB62smYOKV6YiUndtzYVl1bwkHKRrLaOm1ZzKxuq6E_wUvd_nbmN4GCFltfHJQN_rAcKYlCS1ELIVdFa2e6WJIaUITm2j3-g4KUrUwlut1YJSLVjVwlv95a12s_Xd85Ox24A9GP8BngUf94I_vofpv4PV6vLXMs3-Yu_3KcPu4NfxtxINb2p1d32hrvj3O8G_fVacPwFdvJ8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905669861</pqid></control><display><type>article</type><title>Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jun, Dae Won ; Cho, Won Kyeong ; Jun, Jin Hyun ; Kwon, Hyuk Jin ; Jang, Ki-Seok ; Kim, Hyun-Jeong ; Jeon, Hye Jun ; Lee, Kang Nyeong ; Lee, Hang Lak ; Lee, Oh Young ; Yoon, Byung Chul ; Choi, Ho Soon ; Hahm, Joon Soo ; Lee, Min Ho</creator><creatorcontrib>Jun, Dae Won ; Cho, Won Kyeong ; Jun, Jin Hyun ; Kwon, Hyuk Jin ; Jang, Ki-Seok ; Kim, Hyun-Jeong ; Jeon, Hye Jun ; Lee, Kang Nyeong ; Lee, Hang Lak ; Lee, Oh Young ; Yoon, Byung Chul ; Choi, Ho Soon ; Hahm, Joon Soo ; Lee, Min Ho</creatorcontrib><description>Background: Mitochondria are the main sites for fatty acid oxidation and play a central role in lipotoxicity and nonalcoholic steatohepatitis. Aims: We investigated whether carnitine prevents free fatty acid (FFA)‐induced lipotoxicity in vitro and in vivo. Methods: HepG2 cells were incubated with FFA, along with carnitine and carnitine complexes. Mitochondrial β‐oxidation, transmembrane potential, intracellular ATP levels and changes in mitochondrial copy number and morphology were analysed. Otsuka Long‐Evans Tokushima Fatty and Long‐Evans Tokushima Otsuka rats were segregated into three experimental groups and fed for 8 weeks with (i) normal chow, (ii) a methionine choline‐deficient (MCD) diet or (iii) an l‐carnitine‐supplemented MCD diet. Results: Carnitine prevented FFA‐induced apoptosis (16% vs. 3%, P &lt; 0.05). FFA treatment resulted in swollen mitochondria with increased inner matrix density and loss of cristae. However, mitochondria co‐treated with carnitine had normal ultrastructure. The mitochondrial DNA copy number was higher in the carnitine treatment group than in the palmitic acid treatment group (375 vs. 221 copies, P &lt; 0.05). The carnitine group showed higher mitochondrial β‐oxidation than did the control and palmitic acid treatment groups (597 vs. 432 and 395 ccpm, P &lt; 0.05). Carnitine treatment increased the mRNA expression of carnitine palmitoyltransferase 1A and peroxisome proliferator‐activated receptor‐γ, and carnitine‐lipoic acid further augmented the mRNA expression. In the in vivo model, carnitine‐treated rats showed lower alanine transaminase levels and lesser lobular inflammation than did the MCD‐treated rats. Conclusions: Carnitine and carnitine‐lipoic acid prevent lipotoxicity by increasing mitochondrial β‐oxidation and reducing intracellular oxidative stress.</description><identifier>ISSN: 1478-3223</identifier><identifier>EISSN: 1478-3231</identifier><identifier>DOI: 10.1111/j.1478-3231.2011.02602.x</identifier><identifier>PMID: 22093454</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Apoptosis - drug effects ; carnitine ; Carnitine - analogs &amp; derivatives ; Carnitine - pharmacology ; Carnitine O-Palmitoyltransferase - genetics ; Carnitine O-Palmitoyltransferase - metabolism ; Choline Deficiency - complications ; Disease Models, Animal ; DNA, Mitochondrial - metabolism ; Fatty Acids, Nonesterified - metabolism ; Fatty Liver - etiology ; Fatty Liver - genetics ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Fatty Liver - prevention &amp; control ; Gene Expression Regulation - drug effects ; Hep G2 Cells ; Humans ; lipotoxicity ; Liver - drug effects ; Liver - metabolism ; Liver - pathology ; Lysosomes - drug effects ; Lysosomes - metabolism ; Membrane Potential, Mitochondrial - drug effects ; Methionine - deficiency ; mitochondria ; Mitochondria, Liver - drug effects ; Mitochondria, Liver - metabolism ; Mitochondria, Liver - pathology ; Non-alcoholic Fatty Liver Disease ; Oxidation-Reduction ; Oxidative Stress - drug effects ; PPAR gamma - genetics ; PPAR gamma - metabolism ; Rats ; Rats, Inbred OLETF ; Rats, Long-Evans ; RNA, Messenger - metabolism ; Thioctic Acid - analogs &amp; derivatives ; Thioctic Acid - pharmacology ; Time Factors</subject><ispartof>Liver international, 2011-10, Vol.31 (9), p.1315-1324</ispartof><rights>2011 John Wiley &amp; Sons A/S</rights><rights>2011 John Wiley &amp; Sons A/S.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5222-2c618e70f01fd902be8952fe434c409ab8536d2495203e9f8d21c8a3197da5b63</citedby><cites>FETCH-LOGICAL-c5222-2c618e70f01fd902be8952fe434c409ab8536d2495203e9f8d21c8a3197da5b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1478-3231.2011.02602.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1478-3231.2011.02602.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22093454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Dae Won</creatorcontrib><creatorcontrib>Cho, Won Kyeong</creatorcontrib><creatorcontrib>Jun, Jin Hyun</creatorcontrib><creatorcontrib>Kwon, Hyuk Jin</creatorcontrib><creatorcontrib>Jang, Ki-Seok</creatorcontrib><creatorcontrib>Kim, Hyun-Jeong</creatorcontrib><creatorcontrib>Jeon, Hye Jun</creatorcontrib><creatorcontrib>Lee, Kang Nyeong</creatorcontrib><creatorcontrib>Lee, Hang Lak</creatorcontrib><creatorcontrib>Lee, Oh Young</creatorcontrib><creatorcontrib>Yoon, Byung Chul</creatorcontrib><creatorcontrib>Choi, Ho Soon</creatorcontrib><creatorcontrib>Hahm, Joon Soo</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><title>Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction</title><title>Liver international</title><addtitle>Liver International</addtitle><description>Background: Mitochondria are the main sites for fatty acid oxidation and play a central role in lipotoxicity and nonalcoholic steatohepatitis. Aims: We investigated whether carnitine prevents free fatty acid (FFA)‐induced lipotoxicity in vitro and in vivo. Methods: HepG2 cells were incubated with FFA, along with carnitine and carnitine complexes. Mitochondrial β‐oxidation, transmembrane potential, intracellular ATP levels and changes in mitochondrial copy number and morphology were analysed. Otsuka Long‐Evans Tokushima Fatty and Long‐Evans Tokushima Otsuka rats were segregated into three experimental groups and fed for 8 weeks with (i) normal chow, (ii) a methionine choline‐deficient (MCD) diet or (iii) an l‐carnitine‐supplemented MCD diet. Results: Carnitine prevented FFA‐induced apoptosis (16% vs. 3%, P &lt; 0.05). FFA treatment resulted in swollen mitochondria with increased inner matrix density and loss of cristae. However, mitochondria co‐treated with carnitine had normal ultrastructure. The mitochondrial DNA copy number was higher in the carnitine treatment group than in the palmitic acid treatment group (375 vs. 221 copies, P &lt; 0.05). The carnitine group showed higher mitochondrial β‐oxidation than did the control and palmitic acid treatment groups (597 vs. 432 and 395 ccpm, P &lt; 0.05). Carnitine treatment increased the mRNA expression of carnitine palmitoyltransferase 1A and peroxisome proliferator‐activated receptor‐γ, and carnitine‐lipoic acid further augmented the mRNA expression. In the in vivo model, carnitine‐treated rats showed lower alanine transaminase levels and lesser lobular inflammation than did the MCD‐treated rats. Conclusions: Carnitine and carnitine‐lipoic acid prevent lipotoxicity by increasing mitochondrial β‐oxidation and reducing intracellular oxidative stress.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>carnitine</subject><subject>Carnitine - analogs &amp; derivatives</subject><subject>Carnitine - pharmacology</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Carnitine O-Palmitoyltransferase - metabolism</subject><subject>Choline Deficiency - complications</subject><subject>Disease Models, Animal</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Fatty Liver - etiology</subject><subject>Fatty Liver - genetics</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Fatty Liver - prevention &amp; control</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>lipotoxicity</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Methionine - deficiency</subject><subject>mitochondria</subject><subject>Mitochondria, Liver - drug effects</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondria, Liver - pathology</subject><subject>Non-alcoholic Fatty Liver Disease</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - drug effects</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - metabolism</subject><subject>Rats</subject><subject>Rats, Inbred OLETF</subject><subject>Rats, Long-Evans</subject><subject>RNA, Messenger - metabolism</subject><subject>Thioctic Acid - analogs &amp; derivatives</subject><subject>Thioctic Acid - pharmacology</subject><subject>Time Factors</subject><issn>1478-3223</issn><issn>1478-3231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9v1DAQxS1ERUvhKyDfOCX4T-LEBw6olNJqaYsE9Gg59lj1ko23tlM2374JW_bMXGY0894b6YcQpqSkc31Yl7Rq2oIzTktGKC0JE4SVuxfo5HB4eZgZP0avU1oTQqWs6St0zBiRvKqrE_RwG-ERhuzDgIPDLgJgp3OesDbeFn6wowGL72Grsze499uQw84bPyu6CRsdB5_9APjRa7xExaT7JWnjczD3YbDRzws7JTcOZnnzBh053Sd4-9xP0c8v5z_Ovharm4vLs0-rwtSMsYIZQVtoiCPUWUlYB62smYOKV6YiUndtzYVl1bwkHKRrLaOm1ZzKxuq6E_wUvd_nbmN4GCFltfHJQN_rAcKYlCS1ELIVdFa2e6WJIaUITm2j3-g4KUrUwlut1YJSLVjVwlv95a12s_Xd85Ox24A9GP8BngUf94I_vofpv4PV6vLXMs3-Yu_3KcPu4NfxtxINb2p1d32hrvj3O8G_fVacPwFdvJ8g</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Jun, Dae Won</creator><creator>Cho, Won Kyeong</creator><creator>Jun, Jin Hyun</creator><creator>Kwon, Hyuk Jin</creator><creator>Jang, Ki-Seok</creator><creator>Kim, Hyun-Jeong</creator><creator>Jeon, Hye Jun</creator><creator>Lee, Kang Nyeong</creator><creator>Lee, Hang Lak</creator><creator>Lee, Oh Young</creator><creator>Yoon, Byung Chul</creator><creator>Choi, Ho Soon</creator><creator>Hahm, Joon Soo</creator><creator>Lee, Min Ho</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction</title><author>Jun, Dae Won ; Cho, Won Kyeong ; Jun, Jin Hyun ; Kwon, Hyuk Jin ; Jang, Ki-Seok ; Kim, Hyun-Jeong ; Jeon, Hye Jun ; Lee, Kang Nyeong ; Lee, Hang Lak ; Lee, Oh Young ; Yoon, Byung Chul ; Choi, Ho Soon ; Hahm, Joon Soo ; Lee, Min Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5222-2c618e70f01fd902be8952fe434c409ab8536d2495203e9f8d21c8a3197da5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>carnitine</topic><topic>Carnitine - analogs &amp; derivatives</topic><topic>Carnitine - pharmacology</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Carnitine O-Palmitoyltransferase - metabolism</topic><topic>Choline Deficiency - complications</topic><topic>Disease Models, Animal</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Fatty Liver - etiology</topic><topic>Fatty Liver - genetics</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Fatty Liver - prevention &amp; control</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>lipotoxicity</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Methionine - deficiency</topic><topic>mitochondria</topic><topic>Mitochondria, Liver - drug effects</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondria, Liver - pathology</topic><topic>Non-alcoholic Fatty Liver Disease</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - drug effects</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - metabolism</topic><topic>Rats</topic><topic>Rats, Inbred OLETF</topic><topic>Rats, Long-Evans</topic><topic>RNA, Messenger - metabolism</topic><topic>Thioctic Acid - analogs &amp; derivatives</topic><topic>Thioctic Acid - pharmacology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Dae Won</creatorcontrib><creatorcontrib>Cho, Won Kyeong</creatorcontrib><creatorcontrib>Jun, Jin Hyun</creatorcontrib><creatorcontrib>Kwon, Hyuk Jin</creatorcontrib><creatorcontrib>Jang, Ki-Seok</creatorcontrib><creatorcontrib>Kim, Hyun-Jeong</creatorcontrib><creatorcontrib>Jeon, Hye Jun</creatorcontrib><creatorcontrib>Lee, Kang Nyeong</creatorcontrib><creatorcontrib>Lee, Hang Lak</creatorcontrib><creatorcontrib>Lee, Oh Young</creatorcontrib><creatorcontrib>Yoon, Byung Chul</creatorcontrib><creatorcontrib>Choi, Ho Soon</creatorcontrib><creatorcontrib>Hahm, Joon Soo</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Liver international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Dae Won</au><au>Cho, Won Kyeong</au><au>Jun, Jin Hyun</au><au>Kwon, Hyuk Jin</au><au>Jang, Ki-Seok</au><au>Kim, Hyun-Jeong</au><au>Jeon, Hye Jun</au><au>Lee, Kang Nyeong</au><au>Lee, Hang Lak</au><au>Lee, Oh Young</au><au>Yoon, Byung Chul</au><au>Choi, Ho Soon</au><au>Hahm, Joon Soo</au><au>Lee, Min Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction</atitle><jtitle>Liver international</jtitle><addtitle>Liver International</addtitle><date>2011-10</date><risdate>2011</risdate><volume>31</volume><issue>9</issue><spage>1315</spage><epage>1324</epage><pages>1315-1324</pages><issn>1478-3223</issn><eissn>1478-3231</eissn><abstract>Background: Mitochondria are the main sites for fatty acid oxidation and play a central role in lipotoxicity and nonalcoholic steatohepatitis. Aims: We investigated whether carnitine prevents free fatty acid (FFA)‐induced lipotoxicity in vitro and in vivo. Methods: HepG2 cells were incubated with FFA, along with carnitine and carnitine complexes. Mitochondrial β‐oxidation, transmembrane potential, intracellular ATP levels and changes in mitochondrial copy number and morphology were analysed. Otsuka Long‐Evans Tokushima Fatty and Long‐Evans Tokushima Otsuka rats were segregated into three experimental groups and fed for 8 weeks with (i) normal chow, (ii) a methionine choline‐deficient (MCD) diet or (iii) an l‐carnitine‐supplemented MCD diet. Results: Carnitine prevented FFA‐induced apoptosis (16% vs. 3%, P &lt; 0.05). FFA treatment resulted in swollen mitochondria with increased inner matrix density and loss of cristae. However, mitochondria co‐treated with carnitine had normal ultrastructure. The mitochondrial DNA copy number was higher in the carnitine treatment group than in the palmitic acid treatment group (375 vs. 221 copies, P &lt; 0.05). The carnitine group showed higher mitochondrial β‐oxidation than did the control and palmitic acid treatment groups (597 vs. 432 and 395 ccpm, P &lt; 0.05). Carnitine treatment increased the mRNA expression of carnitine palmitoyltransferase 1A and peroxisome proliferator‐activated receptor‐γ, and carnitine‐lipoic acid further augmented the mRNA expression. In the in vivo model, carnitine‐treated rats showed lower alanine transaminase levels and lesser lobular inflammation than did the MCD‐treated rats. Conclusions: Carnitine and carnitine‐lipoic acid prevent lipotoxicity by increasing mitochondrial β‐oxidation and reducing intracellular oxidative stress.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>22093454</pmid><doi>10.1111/j.1478-3231.2011.02602.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-3223
ispartof Liver international, 2011-10, Vol.31 (9), p.1315-1324
issn 1478-3223
1478-3231
language eng
recordid cdi_proquest_miscellaneous_905669861
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenosine Triphosphate - metabolism
Animals
Apoptosis - drug effects
carnitine
Carnitine - analogs & derivatives
Carnitine - pharmacology
Carnitine O-Palmitoyltransferase - genetics
Carnitine O-Palmitoyltransferase - metabolism
Choline Deficiency - complications
Disease Models, Animal
DNA, Mitochondrial - metabolism
Fatty Acids, Nonesterified - metabolism
Fatty Liver - etiology
Fatty Liver - genetics
Fatty Liver - metabolism
Fatty Liver - pathology
Fatty Liver - prevention & control
Gene Expression Regulation - drug effects
Hep G2 Cells
Humans
lipotoxicity
Liver - drug effects
Liver - metabolism
Liver - pathology
Lysosomes - drug effects
Lysosomes - metabolism
Membrane Potential, Mitochondrial - drug effects
Methionine - deficiency
mitochondria
Mitochondria, Liver - drug effects
Mitochondria, Liver - metabolism
Mitochondria, Liver - pathology
Non-alcoholic Fatty Liver Disease
Oxidation-Reduction
Oxidative Stress - drug effects
PPAR gamma - genetics
PPAR gamma - metabolism
Rats
Rats, Inbred OLETF
Rats, Long-Evans
RNA, Messenger - metabolism
Thioctic Acid - analogs & derivatives
Thioctic Acid - pharmacology
Time Factors
title Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevention%20of%20free%20fatty%20acid-induced%20hepatic%20lipotoxicity%20by%20carnitine%20via%20reversal%20of%20mitochondrial%20dysfunction&rft.jtitle=Liver%20international&rft.au=Jun,%20Dae%20Won&rft.date=2011-10&rft.volume=31&rft.issue=9&rft.spage=1315&rft.epage=1324&rft.pages=1315-1324&rft.issn=1478-3223&rft.eissn=1478-3231&rft_id=info:doi/10.1111/j.1478-3231.2011.02602.x&rft_dat=%3Cproquest_cross%3E905669861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905669861&rft_id=info:pmid/22093454&rfr_iscdi=true