Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization

The release of guest species from within a nanoporous metal–organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I2, a hazardous radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-11, Vol.133 (46), p.18583-18585
Hauptverfasser: Chapman, Karena W, Sava, Dorina F, Halder, Gregory J, Chupas, Peter J, Nenoff, Tina M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18585
container_issue 46
container_start_page 18583
container_title Journal of the American Chemical Society
container_volume 133
creator Chapman, Karena W
Sava, Dorina F
Halder, Gregory J
Chupas, Peter J
Nenoff, Tina M
description The release of guest species from within a nanoporous metal–organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I2, a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I2 and improve I2 retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I2 remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.
doi_str_mv 10.1021/ja2085096
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_905668874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>905668874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a407t-6f8b596112d3e2e4560d252f486f9d6117f2facfb1d8f7bc773de70db944c5d83</originalsourceid><addsrcrecordid>eNptkMtO3DAUQC0EYqbAgh-oLCRUdZFiO4ntLNGoUCReC1hHjh8TTyd2sB2N2lX_oX_YL6nRDKxYXd2royPdA8ApRt8wIvhiJQjiNWroHpjjmqCixoTugzlCiBSM03IGPsW4ymtFOD4EM0IQKUvO5kA9BTGO1i3h9aRjinBjU28dFPBeOD_64KcI73QS639__j6EpXBWwqsgBr3x4SdMfQaWPXwMOsYp6OLGqUlqBS8HH8be_hbJencMDoxYR32ym0fg-er70-JHcftwfbO4vC1EhVgqqOFd3VCMiSo10VVNkSI1MRWnplH5zgwxQpoOK25YJxkrlWZIdU1VyVrx8gicbb0-JttGaZOWvfTOaZlanPvgCmXoyxYag395_bkdbJR6vRZO52fbBtWUcs6qTH7dkjL4GIM27RjsIMKv7Gpfw7fv4TP7eWedukGrd_KtdAbOt4CQsV35Kbhc4gPRf8ZWiwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905668874</pqid></control><display><type>article</type><title>Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization</title><source>ACS Publications</source><creator>Chapman, Karena W ; Sava, Dorina F ; Halder, Gregory J ; Chupas, Peter J ; Nenoff, Tina M</creator><creatorcontrib>Chapman, Karena W ; Sava, Dorina F ; Halder, Gregory J ; Chupas, Peter J ; Nenoff, Tina M ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The release of guest species from within a nanoporous metal–organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I2, a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I2 and improve I2 retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I2 remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2085096</identifier><identifier>PMID: 22023387</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2011-11, Vol.133 (46), p.18583-18585</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a407t-6f8b596112d3e2e4560d252f486f9d6117f2facfb1d8f7bc773de70db944c5d83</citedby><cites>FETCH-LOGICAL-a407t-6f8b596112d3e2e4560d252f486f9d6117f2facfb1d8f7bc773de70db944c5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2085096$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2085096$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22023387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1096140$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Karena W</creatorcontrib><creatorcontrib>Sava, Dorina F</creatorcontrib><creatorcontrib>Halder, Gregory J</creatorcontrib><creatorcontrib>Chupas, Peter J</creatorcontrib><creatorcontrib>Nenoff, Tina M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The release of guest species from within a nanoporous metal–organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I2, a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I2 and improve I2 retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I2 remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkMtO3DAUQC0EYqbAgh-oLCRUdZFiO4ntLNGoUCReC1hHjh8TTyd2sB2N2lX_oX_YL6nRDKxYXd2royPdA8ApRt8wIvhiJQjiNWroHpjjmqCixoTugzlCiBSM03IGPsW4ymtFOD4EM0IQKUvO5kA9BTGO1i3h9aRjinBjU28dFPBeOD_64KcI73QS639__j6EpXBWwqsgBr3x4SdMfQaWPXwMOsYp6OLGqUlqBS8HH8be_hbJencMDoxYR32ym0fg-er70-JHcftwfbO4vC1EhVgqqOFd3VCMiSo10VVNkSI1MRWnplH5zgwxQpoOK25YJxkrlWZIdU1VyVrx8gicbb0-JttGaZOWvfTOaZlanPvgCmXoyxYag395_bkdbJR6vRZO52fbBtWUcs6qTH7dkjL4GIM27RjsIMKv7Gpfw7fv4TP7eWedukGrd_KtdAbOt4CQsV35Kbhc4gPRf8ZWiwk</recordid><startdate>20111123</startdate><enddate>20111123</enddate><creator>Chapman, Karena W</creator><creator>Sava, Dorina F</creator><creator>Halder, Gregory J</creator><creator>Chupas, Peter J</creator><creator>Nenoff, Tina M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20111123</creationdate><title>Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization</title><author>Chapman, Karena W ; Sava, Dorina F ; Halder, Gregory J ; Chupas, Peter J ; Nenoff, Tina M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a407t-6f8b596112d3e2e4560d252f486f9d6117f2facfb1d8f7bc773de70db944c5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Karena W</creatorcontrib><creatorcontrib>Sava, Dorina F</creatorcontrib><creatorcontrib>Halder, Gregory J</creatorcontrib><creatorcontrib>Chupas, Peter J</creatorcontrib><creatorcontrib>Nenoff, Tina M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Karena W</au><au>Sava, Dorina F</au><au>Halder, Gregory J</au><au>Chupas, Peter J</au><au>Nenoff, Tina M</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-11-23</date><risdate>2011</risdate><volume>133</volume><issue>46</issue><spage>18583</spage><epage>18585</epage><pages>18583-18585</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The release of guest species from within a nanoporous metal–organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I2, a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I2 and improve I2 retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I2 remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22023387</pmid><doi>10.1021/ja2085096</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-11, Vol.133 (46), p.18583-18585
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_905668874
source ACS Publications
title Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T08%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapping%20Guests%20within%20a%20Nanoporous%20Metal%E2%80%93Organic%20Framework%20through%20Pressure-Induced%20Amorphization&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chapman,%20Karena%20W&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2011-11-23&rft.volume=133&rft.issue=46&rft.spage=18583&rft.epage=18585&rft.pages=18583-18585&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2085096&rft_dat=%3Cproquest_osti_%3E905668874%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905668874&rft_id=info:pmid/22023387&rfr_iscdi=true