Application of Cluster Analysis to Climate Model Performance Metrics

The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individualmodels thatmeasure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2011-08, Vol.50 (8), p.1666-1675
Hauptverfasser: Yokoi, Satoru, Takayabu, Yukari N., Nishii, Kazuaki, Nakamura, Hisashi, Endo, Hirokazu, Ichikawa, Hiroki, Inoue, Tomoshige, Kimoto, Masahide, Kosaka, Yu, Miyasaka, Takafumi, Oshima, Kazuhiro, Sato, Naoki, Tsushima, Yoko, Watanabe, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1675
container_issue 8
container_start_page 1666
container_title Journal of applied meteorology and climatology
container_volume 50
creator Yokoi, Satoru
Takayabu, Yukari N.
Nishii, Kazuaki
Nakamura, Hisashi
Endo, Hirokazu
Ichikawa, Hiroki
Inoue, Tomoshige
Kimoto, Masahide
Kosaka, Yu
Miyasaka, Takafumi
Oshima, Kazuhiro
Sato, Naoki
Tsushima, Yoko
Watanabe, Masahiro
description The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individualmodels thatmeasure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performancemetrics. Two clusteringmethods, theK-means and the Wardmethods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.
doi_str_mv 10.1175/2011jamc2643.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_904490659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26174121</jstor_id><sourcerecordid>26174121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-df52367e184d4993afc04caf669d0213957516fa587f721e38615dd0d1814f0d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK5evQlFEU9dM_lokuNSv9lFD3ouIU2gpW1q0h7235tllxUETzPMPDPwPklyCWgBwNk9RgCN6jTOKVnAUTIDxkQmKMHHhx7T0-QshAYhSjlns-RhOQxtrdVYuz51Ni3aKYzGp8tetZtQh3R0cVZ3ajTp2lWmTT-Mt853qtdxYkZf63CenFjVBnOxr_Pk6-nxs3jJVu_Pr8VylWkq6JhVlmGScwOCVlRKoqxGVCub57JCGIhknEFuFRPccgyGiBxYVaEKBFCLKjJP7nZ_B---JxPGsquDNm2reuOmUMqYSqKcyUhe_yEbN_mYKZRCCMS4pCxCN_9BWGDGCCeMRmqxo7R3IXhjy8FHH35TAiq34sut-LflutiKLyEe3O7fqqBVa31UVYfDFaY0ghJH7mrHNWF0_nefA6cQdfwASguJrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825537354</pqid></control><display><type>article</type><title>Application of Cluster Analysis to Climate Model Performance Metrics</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yokoi, Satoru ; Takayabu, Yukari N. ; Nishii, Kazuaki ; Nakamura, Hisashi ; Endo, Hirokazu ; Ichikawa, Hiroki ; Inoue, Tomoshige ; Kimoto, Masahide ; Kosaka, Yu ; Miyasaka, Takafumi ; Oshima, Kazuhiro ; Sato, Naoki ; Tsushima, Yoko ; Watanabe, Masahiro</creator><creatorcontrib>Yokoi, Satoru ; Takayabu, Yukari N. ; Nishii, Kazuaki ; Nakamura, Hisashi ; Endo, Hirokazu ; Ichikawa, Hiroki ; Inoue, Tomoshige ; Kimoto, Masahide ; Kosaka, Yu ; Miyasaka, Takafumi ; Oshima, Kazuhiro ; Sato, Naoki ; Tsushima, Yoko ; Watanabe, Masahiro</creatorcontrib><description>The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individualmodels thatmeasure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performancemetrics. Two clusteringmethods, theK-means and the Wardmethods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/2011jamc2643.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Analysis ; Atmospheric models ; Business metrics ; Climate ; Climate change ; Climate models ; Climatic analysis ; Cluster analysis ; Clustering ; Constraint modelling ; Correlation ; Correlations ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; General circulation models ; Global climate models ; Meteorology ; Methods ; Modeling ; Modelling ; Performance evaluation ; Performance measurement ; Performance metrics ; Radiation ; Reproducibility ; Simulations ; Studies ; Wind</subject><ispartof>Journal of applied meteorology and climatology, 2011-08, Vol.50 (8), p.1666-1675</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-df52367e184d4993afc04caf669d0213957516fa587f721e38615dd0d1814f0d3</citedby><cites>FETCH-LOGICAL-c484t-df52367e184d4993afc04caf669d0213957516fa587f721e38615dd0d1814f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26174121$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26174121$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24426492$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokoi, Satoru</creatorcontrib><creatorcontrib>Takayabu, Yukari N.</creatorcontrib><creatorcontrib>Nishii, Kazuaki</creatorcontrib><creatorcontrib>Nakamura, Hisashi</creatorcontrib><creatorcontrib>Endo, Hirokazu</creatorcontrib><creatorcontrib>Ichikawa, Hiroki</creatorcontrib><creatorcontrib>Inoue, Tomoshige</creatorcontrib><creatorcontrib>Kimoto, Masahide</creatorcontrib><creatorcontrib>Kosaka, Yu</creatorcontrib><creatorcontrib>Miyasaka, Takafumi</creatorcontrib><creatorcontrib>Oshima, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Naoki</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><title>Application of Cluster Analysis to Climate Model Performance Metrics</title><title>Journal of applied meteorology and climatology</title><description>The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individualmodels thatmeasure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performancemetrics. Two clusteringmethods, theK-means and the Wardmethods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.</description><subject>Analysis</subject><subject>Atmospheric models</subject><subject>Business metrics</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic analysis</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Constraint modelling</subject><subject>Correlation</subject><subject>Correlations</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Global climate models</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Performance metrics</subject><subject>Radiation</subject><subject>Reproducibility</subject><subject>Simulations</subject><subject>Studies</subject><subject>Wind</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhosouK5evQlFEU9dM_lokuNSv9lFD3ouIU2gpW1q0h7235tllxUETzPMPDPwPklyCWgBwNk9RgCN6jTOKVnAUTIDxkQmKMHHhx7T0-QshAYhSjlns-RhOQxtrdVYuz51Ni3aKYzGp8tetZtQh3R0cVZ3ajTp2lWmTT-Mt853qtdxYkZf63CenFjVBnOxr_Pk6-nxs3jJVu_Pr8VylWkq6JhVlmGScwOCVlRKoqxGVCub57JCGIhknEFuFRPccgyGiBxYVaEKBFCLKjJP7nZ_B---JxPGsquDNm2reuOmUMqYSqKcyUhe_yEbN_mYKZRCCMS4pCxCN_9BWGDGCCeMRmqxo7R3IXhjy8FHH35TAiq34sut-LflutiKLyEe3O7fqqBVa31UVYfDFaY0ghJH7mrHNWF0_nefA6cQdfwASguJrA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Yokoi, Satoru</creator><creator>Takayabu, Yukari N.</creator><creator>Nishii, Kazuaki</creator><creator>Nakamura, Hisashi</creator><creator>Endo, Hirokazu</creator><creator>Ichikawa, Hiroki</creator><creator>Inoue, Tomoshige</creator><creator>Kimoto, Masahide</creator><creator>Kosaka, Yu</creator><creator>Miyasaka, Takafumi</creator><creator>Oshima, Kazuhiro</creator><creator>Sato, Naoki</creator><creator>Tsushima, Yoko</creator><creator>Watanabe, Masahiro</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20110801</creationdate><title>Application of Cluster Analysis to Climate Model Performance Metrics</title><author>Yokoi, Satoru ; Takayabu, Yukari N. ; Nishii, Kazuaki ; Nakamura, Hisashi ; Endo, Hirokazu ; Ichikawa, Hiroki ; Inoue, Tomoshige ; Kimoto, Masahide ; Kosaka, Yu ; Miyasaka, Takafumi ; Oshima, Kazuhiro ; Sato, Naoki ; Tsushima, Yoko ; Watanabe, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-df52367e184d4993afc04caf669d0213957516fa587f721e38615dd0d1814f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Atmospheric models</topic><topic>Business metrics</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic analysis</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Constraint modelling</topic><topic>Correlation</topic><topic>Correlations</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Global climate models</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Performance metrics</topic><topic>Radiation</topic><topic>Reproducibility</topic><topic>Simulations</topic><topic>Studies</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokoi, Satoru</creatorcontrib><creatorcontrib>Takayabu, Yukari N.</creatorcontrib><creatorcontrib>Nishii, Kazuaki</creatorcontrib><creatorcontrib>Nakamura, Hisashi</creatorcontrib><creatorcontrib>Endo, Hirokazu</creatorcontrib><creatorcontrib>Ichikawa, Hiroki</creatorcontrib><creatorcontrib>Inoue, Tomoshige</creatorcontrib><creatorcontrib>Kimoto, Masahide</creatorcontrib><creatorcontrib>Kosaka, Yu</creatorcontrib><creatorcontrib>Miyasaka, Takafumi</creatorcontrib><creatorcontrib>Oshima, Kazuhiro</creatorcontrib><creatorcontrib>Sato, Naoki</creatorcontrib><creatorcontrib>Tsushima, Yoko</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokoi, Satoru</au><au>Takayabu, Yukari N.</au><au>Nishii, Kazuaki</au><au>Nakamura, Hisashi</au><au>Endo, Hirokazu</au><au>Ichikawa, Hiroki</au><au>Inoue, Tomoshige</au><au>Kimoto, Masahide</au><au>Kosaka, Yu</au><au>Miyasaka, Takafumi</au><au>Oshima, Kazuhiro</au><au>Sato, Naoki</au><au>Tsushima, Yoko</au><au>Watanabe, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Cluster Analysis to Climate Model Performance Metrics</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>50</volume><issue>8</issue><spage>1666</spage><epage>1675</epage><pages>1666-1675</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>The overall performance of general circulation models is often investigated on the basis of the synthesis of a number of scalar performance metrics of individualmodels thatmeasure the reproducibility of diverse aspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysis to group 43 performancemetrics. Two clusteringmethods, theK-means and the Wardmethods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2011jamc2643.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2011-08, Vol.50 (8), p.1666-1675
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_miscellaneous_904490659
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analysis
Atmospheric models
Business metrics
Climate
Climate change
Climate models
Climatic analysis
Cluster analysis
Clustering
Constraint modelling
Correlation
Correlations
Datasets
Earth, ocean, space
Exact sciences and technology
External geophysics
General circulation models
Global climate models
Meteorology
Methods
Modeling
Modelling
Performance evaluation
Performance measurement
Performance metrics
Radiation
Reproducibility
Simulations
Studies
Wind
title Application of Cluster Analysis to Climate Model Performance Metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Cluster%20Analysis%20to%20Climate%20Model%20Performance%20Metrics&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Yokoi,%20Satoru&rft.date=2011-08-01&rft.volume=50&rft.issue=8&rft.spage=1666&rft.epage=1675&rft.pages=1666-1675&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/2011jamc2643.1&rft_dat=%3Cjstor_proqu%3E26174121%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825537354&rft_id=info:pmid/&rft_jstor_id=26174121&rfr_iscdi=true