Neuraminidase produces a decrease of adherence of slime-forming Staphylococcus aureus to gelatin-impregnated polyester fiber graft fabric: an experimental study

Because slime-forming microorganisms are the major causative agents of graft infections, we aimed to investigate bacterial adherence in slime-forming and nonslime-forming Staphylococcus aureus and to determine the role of neuraminidase (NANase) on adherence to gelatin-impregnated polyester fiber gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of artificial organs 2007-09, Vol.10 (3), p.177-180
Hauptverfasser: Sacar, Mustafa, Onem, Gokhan, Baltalarli, Ahmet, Sacar, Suzan, Turgut, Huseyin, Goksin, Ibrahim, Ozcan, Vefa, Sakarya, Serhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because slime-forming microorganisms are the major causative agents of graft infections, we aimed to investigate bacterial adherence in slime-forming and nonslime-forming Staphylococcus aureus and to determine the role of neuraminidase (NANase) on adherence to gelatin-impregnated polyester fiber graft fabric. An in vitro model was developed to quantitatively measure bacterial adherence to the surface of the graft. The grafts were divided into two groups - those colonized with slime-forming S. aureus and those colonized with nonslime-forming S. aureus. The grafts were put into sterile tubes and human plasma was instilled and incubated at 37 degrees C to perform fibrin deposition on the grafts. After 48 h of incubation, grafts were drained and inoculated with slime-forming or nonslime-forming S. aureus in triptic soy broth in the presence or absence of NANase. Following 36 h of incubation at 36 degrees C, grafts were vortexed and cultured to perform a colony count. Bacterial counts were expressed as total colony-forming units per square centimeter of graft. Slime-forming S. aureus had greater affinity with the graft compared with nonslime-forming S. aureus (P < 0.05). The adherence of slime-forming S. aureus was impaired by NANase treatment (P < 0.001) but NANase treatment of nonslime-forming S. aureus did not change the adherence to the graft (P > 0.05). These results show that slime plays an important role in the pathogenesis of vascular graft infection. Adherence of slime-forming S. aureus can be decreased by NANase treatment. This may have implications for the development of neuraminidase-embedded vascular grafts to diminish biomaterial-related infections.
ISSN:1434-7229
1619-0904
DOI:10.1007/s10047-007-0383-2