Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy
[Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes....
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1 |
container_start_page | 146 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 87 |
creator | Sokolova, Viktoriya Ludwig, Anna-Kristin Hornung, Sandra Rotan, Olga Horn, Peter A. Epple, Matthias Giebel, Bernd |
description | [Display omitted]
► Exosomes from three different cell lines had a diameter of 110
nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4
°C and 37
°C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes.
Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110
nm for the three cell types. The stability of exosomes was examined during storage at −20
°C, 4
°C, and 37
°C. The size of the exosomes decreased at 4
°C and 37
°C, indicating a structural change or degradation. Multiple freezing to −20
°C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size. |
doi_str_mv | 10.1016/j.colsurfb.2011.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_904487072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776511002724</els_id><sourcerecordid>873316795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</originalsourceid><addsrcrecordid>eNqFkUFvFCEUx4nR2G31K1RuepkRmAFmb5qNWpMmHrRn8mDetKwzsMJM0_32MtnWo70Aefnxh_d-hFxyVnPG1cd97eKYlzTYWjDOayZrxpsXZMM73VRto_RLsmFboSutlTwj5znvGWOi5fo1ORNctUwquSEPuztI4GZMPsPsY6BxoPgQc5ww076U77GnQ4oTvVsmCNThOGZqjzRAiAdIs3cj0rlk_PbhlkKA8Zh9LoeeZgchrFUc0c2phE_epZhdPBzfkFcDjBnfPu4X5Obrl1-7q-r6x7fvu8_XlWulmiuJVlrNuGi2emgF2AGUtT20FrtOW1BikFppB9wJi1q7tutFhyBkWdnQNBfk_Sn3kOKfBfNsJp_XJiBgXLLZsrbtNNPiWbIMtuFKb2UhP_yX5FqzRsgSW1B1Qte-c8LBHJKfIB0NZ2Y1afbmyaRZTRomTTFZLl4-vrHYCft_157UFeDdCRggGrgt_szNz5KgimbeNaorxKcTgWW-9x6Tyc5jcNj7VHyYPvrnfvEXk_m-5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770325870</pqid></control><display><type>article</type><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</creator><creatorcontrib>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</creatorcontrib><description>[Display omitted]
► Exosomes from three different cell lines had a diameter of 110
nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4
°C and 37
°C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes.
Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110
nm for the three cell types. The stability of exosomes was examined during storage at −20
°C, 4
°C, and 37
°C. The size of the exosomes decreased at 4
°C and 37
°C, indicating a structural change or degradation. Multiple freezing to −20
°C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2011.05.013</identifier><identifier>PMID: 21640565</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Colloids ; Dynamic light scattering ; Dynamic tests ; Endothelial Cells - cytology ; Exosomes ; Exosomes - ultrastructure ; freezing ; HEK293 Cells ; Human ; Humans ; light scattering ; Melting ; Mesenchymal Stromal Cells - cytology ; Microscopy, Electron, Scanning ; Nanocomposites ; Nanomaterials ; Nanoparticle tracking analysis ; nanoparticles ; Nanoparticles - ultrastructure ; Nanostructure ; Nanotechnology - methods ; Particle Size ; Scanning electron microscopy ; Temperature ; thawing ; Tracking ; ultracentrifugation ; Vesicles</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</citedby><cites>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2011.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21640565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolova, Viktoriya</creatorcontrib><creatorcontrib>Ludwig, Anna-Kristin</creatorcontrib><creatorcontrib>Hornung, Sandra</creatorcontrib><creatorcontrib>Rotan, Olga</creatorcontrib><creatorcontrib>Horn, Peter A.</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Giebel, Bernd</creatorcontrib><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted]
► Exosomes from three different cell lines had a diameter of 110
nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4
°C and 37
°C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes.
Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110
nm for the three cell types. The stability of exosomes was examined during storage at −20
°C, 4
°C, and 37
°C. The size of the exosomes decreased at 4
°C and 37
°C, indicating a structural change or degradation. Multiple freezing to −20
°C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</description><subject>Colloids</subject><subject>Dynamic light scattering</subject><subject>Dynamic tests</subject><subject>Endothelial Cells - cytology</subject><subject>Exosomes</subject><subject>Exosomes - ultrastructure</subject><subject>freezing</subject><subject>HEK293 Cells</subject><subject>Human</subject><subject>Humans</subject><subject>light scattering</subject><subject>Melting</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticle tracking analysis</subject><subject>nanoparticles</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Scanning electron microscopy</subject><subject>Temperature</subject><subject>thawing</subject><subject>Tracking</subject><subject>ultracentrifugation</subject><subject>Vesicles</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFCEUx4nR2G31K1RuepkRmAFmb5qNWpMmHrRn8mDetKwzsMJM0_32MtnWo70Aefnxh_d-hFxyVnPG1cd97eKYlzTYWjDOayZrxpsXZMM73VRto_RLsmFboSutlTwj5znvGWOi5fo1ORNctUwquSEPuztI4GZMPsPsY6BxoPgQc5ww076U77GnQ4oTvVsmCNThOGZqjzRAiAdIs3cj0rlk_PbhlkKA8Zh9LoeeZgchrFUc0c2phE_epZhdPBzfkFcDjBnfPu4X5Obrl1-7q-r6x7fvu8_XlWulmiuJVlrNuGi2emgF2AGUtT20FrtOW1BikFppB9wJi1q7tutFhyBkWdnQNBfk_Sn3kOKfBfNsJp_XJiBgXLLZsrbtNNPiWbIMtuFKb2UhP_yX5FqzRsgSW1B1Qte-c8LBHJKfIB0NZ2Y1afbmyaRZTRomTTFZLl4-vrHYCft_157UFeDdCRggGrgt_szNz5KgimbeNaorxKcTgWW-9x6Tyc5jcNj7VHyYPvrnfvEXk_m-5g</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sokolova, Viktoriya</creator><creator>Ludwig, Anna-Kristin</creator><creator>Hornung, Sandra</creator><creator>Rotan, Olga</creator><creator>Horn, Peter A.</creator><creator>Epple, Matthias</creator><creator>Giebel, Bernd</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111001</creationdate><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><author>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Colloids</topic><topic>Dynamic light scattering</topic><topic>Dynamic tests</topic><topic>Endothelial Cells - cytology</topic><topic>Exosomes</topic><topic>Exosomes - ultrastructure</topic><topic>freezing</topic><topic>HEK293 Cells</topic><topic>Human</topic><topic>Humans</topic><topic>light scattering</topic><topic>Melting</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticle tracking analysis</topic><topic>nanoparticles</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Scanning electron microscopy</topic><topic>Temperature</topic><topic>thawing</topic><topic>Tracking</topic><topic>ultracentrifugation</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolova, Viktoriya</creatorcontrib><creatorcontrib>Ludwig, Anna-Kristin</creatorcontrib><creatorcontrib>Hornung, Sandra</creatorcontrib><creatorcontrib>Rotan, Olga</creatorcontrib><creatorcontrib>Horn, Peter A.</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Giebel, Bernd</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolova, Viktoriya</au><au>Ludwig, Anna-Kristin</au><au>Hornung, Sandra</au><au>Rotan, Olga</au><au>Horn, Peter A.</au><au>Epple, Matthias</au><au>Giebel, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>87</volume><issue>1</issue><spage>146</spage><epage>150</epage><pages>146-150</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted]
► Exosomes from three different cell lines had a diameter of 110
nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4
°C and 37
°C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes.
Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110
nm for the three cell types. The stability of exosomes was examined during storage at −20
°C, 4
°C, and 37
°C. The size of the exosomes decreased at 4
°C and 37
°C, indicating a structural change or degradation. Multiple freezing to −20
°C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21640565</pmid><doi>10.1016/j.colsurfb.2011.05.013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_904487072 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Colloids Dynamic light scattering Dynamic tests Endothelial Cells - cytology Exosomes Exosomes - ultrastructure freezing HEK293 Cells Human Humans light scattering Melting Mesenchymal Stromal Cells - cytology Microscopy, Electron, Scanning Nanocomposites Nanomaterials Nanoparticle tracking analysis nanoparticles Nanoparticles - ultrastructure Nanostructure Nanotechnology - methods Particle Size Scanning electron microscopy Temperature thawing Tracking ultracentrifugation Vesicles |
title | Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20exosomes%20derived%20from%20human%20cells%20by%20nanoparticle%20tracking%20analysis%20and%20scanning%20electron%20microscopy&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Sokolova,%20Viktoriya&rft.date=2011-10-01&rft.volume=87&rft.issue=1&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2011.05.013&rft_dat=%3Cproquest_cross%3E873316795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770325870&rft_id=info:pmid/21640565&rft_els_id=S0927776511002724&rfr_iscdi=true |