Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy

[Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150
Hauptverfasser: Sokolova, Viktoriya, Ludwig, Anna-Kristin, Hornung, Sandra, Rotan, Olga, Horn, Peter A., Epple, Matthias, Giebel, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 146
container_title Colloids and surfaces, B, Biointerfaces
container_volume 87
creator Sokolova, Viktoriya
Ludwig, Anna-Kristin
Hornung, Sandra
Rotan, Olga
Horn, Peter A.
Epple, Matthias
Giebel, Bernd
description [Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes. Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110 nm for the three cell types. The stability of exosomes was examined during storage at −20 °C, 4 °C, and 37 °C. The size of the exosomes decreased at 4 °C and 37 °C, indicating a structural change or degradation. Multiple freezing to −20 °C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.
doi_str_mv 10.1016/j.colsurfb.2011.05.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_904487072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776511002724</els_id><sourcerecordid>873316795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</originalsourceid><addsrcrecordid>eNqFkUFvFCEUx4nR2G31K1RuepkRmAFmb5qNWpMmHrRn8mDetKwzsMJM0_32MtnWo70Aefnxh_d-hFxyVnPG1cd97eKYlzTYWjDOayZrxpsXZMM73VRto_RLsmFboSutlTwj5znvGWOi5fo1ORNctUwquSEPuztI4GZMPsPsY6BxoPgQc5ww076U77GnQ4oTvVsmCNThOGZqjzRAiAdIs3cj0rlk_PbhlkKA8Zh9LoeeZgchrFUc0c2phE_epZhdPBzfkFcDjBnfPu4X5Obrl1-7q-r6x7fvu8_XlWulmiuJVlrNuGi2emgF2AGUtT20FrtOW1BikFppB9wJi1q7tutFhyBkWdnQNBfk_Sn3kOKfBfNsJp_XJiBgXLLZsrbtNNPiWbIMtuFKb2UhP_yX5FqzRsgSW1B1Qte-c8LBHJKfIB0NZ2Y1afbmyaRZTRomTTFZLl4-vrHYCft_157UFeDdCRggGrgt_szNz5KgimbeNaorxKcTgWW-9x6Tyc5jcNj7VHyYPvrnfvEXk_m-5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770325870</pqid></control><display><type>article</type><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</creator><creatorcontrib>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</creatorcontrib><description>[Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes. Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110 nm for the three cell types. The stability of exosomes was examined during storage at −20 °C, 4 °C, and 37 °C. The size of the exosomes decreased at 4 °C and 37 °C, indicating a structural change or degradation. Multiple freezing to −20 °C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2011.05.013</identifier><identifier>PMID: 21640565</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Colloids ; Dynamic light scattering ; Dynamic tests ; Endothelial Cells - cytology ; Exosomes ; Exosomes - ultrastructure ; freezing ; HEK293 Cells ; Human ; Humans ; light scattering ; Melting ; Mesenchymal Stromal Cells - cytology ; Microscopy, Electron, Scanning ; Nanocomposites ; Nanomaterials ; Nanoparticle tracking analysis ; nanoparticles ; Nanoparticles - ultrastructure ; Nanostructure ; Nanotechnology - methods ; Particle Size ; Scanning electron microscopy ; Temperature ; thawing ; Tracking ; ultracentrifugation ; Vesicles</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</citedby><cites>FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2011.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21640565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolova, Viktoriya</creatorcontrib><creatorcontrib>Ludwig, Anna-Kristin</creatorcontrib><creatorcontrib>Hornung, Sandra</creatorcontrib><creatorcontrib>Rotan, Olga</creatorcontrib><creatorcontrib>Horn, Peter A.</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Giebel, Bernd</creatorcontrib><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes. Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110 nm for the three cell types. The stability of exosomes was examined during storage at −20 °C, 4 °C, and 37 °C. The size of the exosomes decreased at 4 °C and 37 °C, indicating a structural change or degradation. Multiple freezing to −20 °C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</description><subject>Colloids</subject><subject>Dynamic light scattering</subject><subject>Dynamic tests</subject><subject>Endothelial Cells - cytology</subject><subject>Exosomes</subject><subject>Exosomes - ultrastructure</subject><subject>freezing</subject><subject>HEK293 Cells</subject><subject>Human</subject><subject>Humans</subject><subject>light scattering</subject><subject>Melting</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticle tracking analysis</subject><subject>nanoparticles</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Scanning electron microscopy</subject><subject>Temperature</subject><subject>thawing</subject><subject>Tracking</subject><subject>ultracentrifugation</subject><subject>Vesicles</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFCEUx4nR2G31K1RuepkRmAFmb5qNWpMmHrRn8mDetKwzsMJM0_32MtnWo70Aefnxh_d-hFxyVnPG1cd97eKYlzTYWjDOayZrxpsXZMM73VRto_RLsmFboSutlTwj5znvGWOi5fo1ORNctUwquSEPuztI4GZMPsPsY6BxoPgQc5ww076U77GnQ4oTvVsmCNThOGZqjzRAiAdIs3cj0rlk_PbhlkKA8Zh9LoeeZgchrFUc0c2phE_epZhdPBzfkFcDjBnfPu4X5Obrl1-7q-r6x7fvu8_XlWulmiuJVlrNuGi2emgF2AGUtT20FrtOW1BikFppB9wJi1q7tutFhyBkWdnQNBfk_Sn3kOKfBfNsJp_XJiBgXLLZsrbtNNPiWbIMtuFKb2UhP_yX5FqzRsgSW1B1Qte-c8LBHJKfIB0NZ2Y1afbmyaRZTRomTTFZLl4-vrHYCft_157UFeDdCRggGrgt_szNz5KgimbeNaorxKcTgWW-9x6Tyc5jcNj7VHyYPvrnfvEXk_m-5g</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sokolova, Viktoriya</creator><creator>Ludwig, Anna-Kristin</creator><creator>Hornung, Sandra</creator><creator>Rotan, Olga</creator><creator>Horn, Peter A.</creator><creator>Epple, Matthias</creator><creator>Giebel, Bernd</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20111001</creationdate><title>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</title><author>Sokolova, Viktoriya ; Ludwig, Anna-Kristin ; Hornung, Sandra ; Rotan, Olga ; Horn, Peter A. ; Epple, Matthias ; Giebel, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-5eb5b7012397f42abfa6bbda4be887ba62f5767ca1c2be77c48d28ea2528e0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Colloids</topic><topic>Dynamic light scattering</topic><topic>Dynamic tests</topic><topic>Endothelial Cells - cytology</topic><topic>Exosomes</topic><topic>Exosomes - ultrastructure</topic><topic>freezing</topic><topic>HEK293 Cells</topic><topic>Human</topic><topic>Humans</topic><topic>light scattering</topic><topic>Melting</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticle tracking analysis</topic><topic>nanoparticles</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Scanning electron microscopy</topic><topic>Temperature</topic><topic>thawing</topic><topic>Tracking</topic><topic>ultracentrifugation</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolova, Viktoriya</creatorcontrib><creatorcontrib>Ludwig, Anna-Kristin</creatorcontrib><creatorcontrib>Hornung, Sandra</creatorcontrib><creatorcontrib>Rotan, Olga</creatorcontrib><creatorcontrib>Horn, Peter A.</creatorcontrib><creatorcontrib>Epple, Matthias</creatorcontrib><creatorcontrib>Giebel, Bernd</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolova, Viktoriya</au><au>Ludwig, Anna-Kristin</au><au>Hornung, Sandra</au><au>Rotan, Olga</au><au>Horn, Peter A.</au><au>Epple, Matthias</au><au>Giebel, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>87</volume><issue>1</issue><spage>146</spage><epage>150</epage><pages>146-150</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] ► Exosomes from three different cell lines had a diameter of 110 nm. ► Ultracentrifugation does not change size or shape of exosomes. ► Multiple shock-freezing and thawing does not affect the exosomes. ► Storage at 4 °C and 37 °C in dispersion leads to slow degradation of exosomes. ► Nanoparticle tracking analysis is well suited to study exosomes. Exosomes from three different cell types (HEK 293T, ECFC, MSC) were characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The diameter was around 110 nm for the three cell types. The stability of exosomes was examined during storage at −20 °C, 4 °C, and 37 °C. The size of the exosomes decreased at 4 °C and 37 °C, indicating a structural change or degradation. Multiple freezing to −20 °C and thawing did not affect the exosome size. Multiple ultracentrifugation also did not change the exosome size.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21640565</pmid><doi>10.1016/j.colsurfb.2011.05.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2011-10, Vol.87 (1), p.146-150
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_904487072
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Colloids
Dynamic light scattering
Dynamic tests
Endothelial Cells - cytology
Exosomes
Exosomes - ultrastructure
freezing
HEK293 Cells
Human
Humans
light scattering
Melting
Mesenchymal Stromal Cells - cytology
Microscopy, Electron, Scanning
Nanocomposites
Nanomaterials
Nanoparticle tracking analysis
nanoparticles
Nanoparticles - ultrastructure
Nanostructure
Nanotechnology - methods
Particle Size
Scanning electron microscopy
Temperature
thawing
Tracking
ultracentrifugation
Vesicles
title Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20exosomes%20derived%20from%20human%20cells%20by%20nanoparticle%20tracking%20analysis%20and%20scanning%20electron%20microscopy&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Sokolova,%20Viktoriya&rft.date=2011-10-01&rft.volume=87&rft.issue=1&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2011.05.013&rft_dat=%3Cproquest_cross%3E873316795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770325870&rft_id=info:pmid/21640565&rft_els_id=S0927776511002724&rfr_iscdi=true