Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22
Metastasis in breast cancer carries a disproportionately worse prognosis than localized primary disease. To identify microRNAs (miRNA) involved in metastasis, the expression of 254 miRNAs was measured across the following cell lines using microarray analysis: MDA-MB-231 breast cancer cells, cells th...
Gespeichert in:
Veröffentlicht in: | Oncogene 2011-03, Vol.30 (11), p.1290-1301 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metastasis in breast cancer carries a disproportionately worse prognosis than localized primary disease. To identify microRNAs (miRNA) involved in metastasis, the expression of 254 miRNAs was measured across the following cell lines using microarray analysis: MDA-MB-231 breast cancer cells, cells that grew as a tumor in the mammary fat pad of nude mice (TMD-231), metastatic disease to the lungs (LMD-231), bone (BMD-231) and adrenal gland (ADMD-231). A brain-seeking variant of this cell line (231-BR) was used additionally in validation studies. Twenty miRNAs were upregulated and seven were downregulated in metastatic cancer cells compared with TMD-231 cells. The expression of the tumor suppressor miRNAs let-7 and miR-22 was consistently downregulated in metastatic cancer cells. These metastatic cells expressed higher levels of putative/proven miR-22 target oncogenes ERBB3, CDC25C and EVI-1. Introduction of miR-22 into cancer cells reduced the levels of ERBB3 and EVI-1 as well as phospho-AKT, an EVI-1 downstream target. The miR-22 primary transcript is located in the 5′-untranslated region of an open reading frame C17orf91, and the promoter/enhancer of C17orf91 drives miR-22 expression. We observed elevated C17orf91 expression in non-basal subtype compared with basal subtype breast cancers. In contrast, elevated expression of EVI-1 was observed in basal subtype and was associated with poor outcome in estrogen receptor-negative breast cancer patients. These results suggest that metastatic cancer cells increase specific oncogenic signaling proteins through downregulation of miRNAs. Identifying such metastasis-specific oncogenic pathways may help to manipulate tumor behavior and aid in the design of more effective targeted therapies. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2010.510 |