A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION
A nonlocal and time-delayed reaction-diffusion model of dengue fever is first proposed that incorporates the aquatic stage, the winged stage, and the incubation periods of the dengue virus within mosquitos and hosts. Then the basic reproduction number R₀ is established for the model system, and an e...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2011-01, Vol.71 (1), p.147-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | SIAM journal on applied mathematics |
container_volume | 71 |
creator | WANG, WENDI ZHAO, XIAO-QIANG |
description | A nonlocal and time-delayed reaction-diffusion model of dengue fever is first proposed that incorporates the aquatic stage, the winged stage, and the incubation periods of the dengue virus within mosquitos and hosts. Then the basic reproduction number R₀ is established for the model system, and an explicit formula of R₀ is obtained in the case of spatially homogeneous infections. It is shown that this R₀ gives the threshold dynamics in the sense that the disease-free equilibrium is asymptotically stable if R₀ < 1 and the disease is uniformly persistent if R₀ > 1. The influences of diffusion coefficients, time delays, and infection heterogeneity on the spread of the disease are also studied via numerical simulations. It turns out that the infection risk may be underestimated if the spatially averaged parameters are used to compute the basic reproduction number for spatially heterogeneous infections. |
doi_str_mv | 10.1137/090775890 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_904479298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41111582</jstor_id><sourcerecordid>41111582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2ad461a112df24d266860f913badb9ea4b0dca5c63a4652b2aace6c66945425d3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVgz9AWLyoh-jsR3azx9AkNZgm0Kagp7D5gpa2abPtwX_vlkoPHtzLLMzDDPMidE_glRAm30CBlK6n4AINCCjXkYR-XqIBABMOYUpdoxtjlgCECK4G6MPHaZYm2chPsJ8GOI8noROEif8VBnga-qM8zlIniKNoPrM_PMlsE2cRDsJ0PA9xPvXT2SSeHZu36KrVK9Pc_dYhmkdhPnp3kmwc2wVOxUHtHaprLogmhNYt5TUVwhPQKsJKXZeq0byEutJuJZjmwqUl1bpqRCWE4i6nbs2G6Ok0d9t3u0Nj9sV6YapmtdKbpjuYQgHnUlHlWfn8r7QZUEY9IZWlj3_osjv0G3tH4UklCeMeWPRyQlXfGdM3bbHtF2vdfxcEimP-xTl_ax9Odmn2XX-GnNjnepT9AAHRd_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879713480</pqid></control><display><type>article</type><title>A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>WANG, WENDI ; ZHAO, XIAO-QIANG</creator><creatorcontrib>WANG, WENDI ; ZHAO, XIAO-QIANG</creatorcontrib><description>A nonlocal and time-delayed reaction-diffusion model of dengue fever is first proposed that incorporates the aquatic stage, the winged stage, and the incubation periods of the dengue virus within mosquitos and hosts. Then the basic reproduction number R₀ is established for the model system, and an explicit formula of R₀ is obtained in the case of spatially homogeneous infections. It is shown that this R₀ gives the threshold dynamics in the sense that the disease-free equilibrium is asymptotically stable if R₀ < 1 and the disease is uniformly persistent if R₀ > 1. The influences of diffusion coefficients, time delays, and infection heterogeneity on the spread of the disease are also studied via numerical simulations. It turns out that the infection risk may be underestimated if the spatially averaged parameters are used to compute the basic reproduction number for spatially heterogeneous infections.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/090775890</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Asymptotic properties ; Bites and stings ; Dengue ; Dengue fever ; Dengue virus ; Diffusion ; Diffusion coefficient ; Disease models ; Disease transmission ; Dynamical systems ; Dynamics ; Eigenvalues ; Epidemiology ; Fever ; Heterogeneity ; Infections ; Mathematical models ; Mosquitos ; Reproduction ; Studies ; Time delay</subject><ispartof>SIAM journal on applied mathematics, 2011-01, Vol.71 (1), p.147-168</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>Copyright Society for Industrial and Applied Mathematics 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2ad461a112df24d266860f913badb9ea4b0dca5c63a4652b2aace6c66945425d3</citedby><cites>FETCH-LOGICAL-c409t-2ad461a112df24d266860f913badb9ea4b0dca5c63a4652b2aace6c66945425d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41111582$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41111582$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3183,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>WANG, WENDI</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><title>A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION</title><title>SIAM journal on applied mathematics</title><description>A nonlocal and time-delayed reaction-diffusion model of dengue fever is first proposed that incorporates the aquatic stage, the winged stage, and the incubation periods of the dengue virus within mosquitos and hosts. Then the basic reproduction number R₀ is established for the model system, and an explicit formula of R₀ is obtained in the case of spatially homogeneous infections. It is shown that this R₀ gives the threshold dynamics in the sense that the disease-free equilibrium is asymptotically stable if R₀ < 1 and the disease is uniformly persistent if R₀ > 1. The influences of diffusion coefficients, time delays, and infection heterogeneity on the spread of the disease are also studied via numerical simulations. It turns out that the infection risk may be underestimated if the spatially averaged parameters are used to compute the basic reproduction number for spatially heterogeneous infections.</description><subject>Asymptotic properties</subject><subject>Bites and stings</subject><subject>Dengue</subject><subject>Dengue fever</subject><subject>Dengue virus</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Disease models</subject><subject>Disease transmission</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Epidemiology</subject><subject>Fever</subject><subject>Heterogeneity</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Mosquitos</subject><subject>Reproduction</subject><subject>Studies</subject><subject>Time delay</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVgz9AWLyoh-jsR3azx9AkNZgm0Kagp7D5gpa2abPtwX_vlkoPHtzLLMzDDPMidE_glRAm30CBlK6n4AINCCjXkYR-XqIBABMOYUpdoxtjlgCECK4G6MPHaZYm2chPsJ8GOI8noROEif8VBnga-qM8zlIniKNoPrM_PMlsE2cRDsJ0PA9xPvXT2SSeHZu36KrVK9Pc_dYhmkdhPnp3kmwc2wVOxUHtHaprLogmhNYt5TUVwhPQKsJKXZeq0byEutJuJZjmwqUl1bpqRCWE4i6nbs2G6Ok0d9t3u0Nj9sV6YapmtdKbpjuYQgHnUlHlWfn8r7QZUEY9IZWlj3_osjv0G3tH4UklCeMeWPRyQlXfGdM3bbHtF2vdfxcEimP-xTl_ax9Odmn2XX-GnNjnepT9AAHRd_A</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>WANG, WENDI</creator><creator>ZHAO, XIAO-QIANG</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U9</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20110101</creationdate><title>A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION</title><author>WANG, WENDI ; ZHAO, XIAO-QIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2ad461a112df24d266860f913badb9ea4b0dca5c63a4652b2aace6c66945425d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Bites and stings</topic><topic>Dengue</topic><topic>Dengue fever</topic><topic>Dengue virus</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Disease models</topic><topic>Disease transmission</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Epidemiology</topic><topic>Fever</topic><topic>Heterogeneity</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Mosquitos</topic><topic>Reproduction</topic><topic>Studies</topic><topic>Time delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, WENDI</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, WENDI</au><au>ZHAO, XIAO-QIANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>71</volume><issue>1</issue><spage>147</spage><epage>168</epage><pages>147-168</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A nonlocal and time-delayed reaction-diffusion model of dengue fever is first proposed that incorporates the aquatic stage, the winged stage, and the incubation periods of the dengue virus within mosquitos and hosts. Then the basic reproduction number R₀ is established for the model system, and an explicit formula of R₀ is obtained in the case of spatially homogeneous infections. It is shown that this R₀ gives the threshold dynamics in the sense that the disease-free equilibrium is asymptotically stable if R₀ < 1 and the disease is uniformly persistent if R₀ > 1. The influences of diffusion coefficients, time delays, and infection heterogeneity on the spread of the disease are also studied via numerical simulations. It turns out that the infection risk may be underestimated if the spatially averaged parameters are used to compute the basic reproduction number for spatially heterogeneous infections.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090775890</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2011-01, Vol.71 (1), p.147-168 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_miscellaneous_904479298 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Asymptotic properties Bites and stings Dengue Dengue fever Dengue virus Diffusion Diffusion coefficient Disease models Disease transmission Dynamical systems Dynamics Eigenvalues Epidemiology Fever Heterogeneity Infections Mathematical models Mosquitos Reproduction Studies Time delay |
title | A NONLOCAL AND TIME-DELAYED REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NONLOCAL%20AND%20TIME-DELAYED%20REACTION-DIFFUSION%20MODEL%20OF%20DENGUE%20TRANSMISSION&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=WANG,%20WENDI&rft.date=2011-01-01&rft.volume=71&rft.issue=1&rft.spage=147&rft.epage=168&rft.pages=147-168&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/090775890&rft_dat=%3Cjstor_proqu%3E41111582%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879713480&rft_id=info:pmid/&rft_jstor_id=41111582&rfr_iscdi=true |