Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency
Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-ener...
Gespeichert in:
Veröffentlicht in: | Journal of inherited metabolic disease 2011-04, Vol.34 (2), p.293-307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 2 |
container_start_page | 293 |
container_title | Journal of inherited metabolic disease |
container_volume | 34 |
creator | Koene, Saskia Willems, Peter H. G. M. Roestenberg, Peggy Koopman, Werner J. H. Smeitink, Jan A. M. |
description | Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs. |
doi_str_mv | 10.1007/s10545-009-9005-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_904478278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>904478278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</originalsourceid><addsrcrecordid>eNqNkUtP3DAUhS0EKlPaH8AGRWxYuVw_bpwsEa9OxWPTrq2McwNBSTzYRMz8ezwKLRJSBSsv_J2je85hbF_ADwFgjqMA1MgBSl4CIF9tsZlAo7jMc9xmMxBa8KJE3GVfY3yABBaIX9iuBAGmBD1jl9d-jJT1vqYuZo0P2TC6jqqQnd2ccBpc-qizvn3y7t4PdWirLnO-X3a0yuZZTU3r2kStv7GdpuoifX9999ifi_Pfpz_51e3l_PTkijtdSMUVmnwhlMlR6JqQFg01qligVk4qoyonSmy0cTkIBKhTKifRGQeyrEvVOLXHjibfZfCPI8Un27fRUddVA6UkNoXSppCm-AQplZZCiUQeviMf_BiGFMMWmLx0Dhs7MUEu-BgDNXYZ2r4KayvAbtaw0xo2lWw3a9hV0hy8Go-Lnup_ir_1J8BMwHPb0fpjR_trfn2WulBJKSdlTKLhjsLbzf-_5wXb7KOL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858274608</pqid></control><display><type>article</type><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Access via Wiley Online Library</source><creator>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</creator><creatorcontrib>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</creatorcontrib><description>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</description><identifier>ISSN: 0141-8955</identifier><identifier>EISSN: 1573-2665</identifier><identifier>DOI: 10.1007/s10545-009-9005-x</identifier><identifier>PMID: 20107904</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Biochemistry ; Cell Nucleus - genetics ; Disease Models, Animal ; DNA - genetics ; DNA, Mitochondrial - genetics ; Electron Transport Complex I - deficiency ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Mice ; Mice, Knockout ; Mitochondrial Diseases - genetics ; Mitochondrial Medicine ; Models, Biological ; Oxidative Phosphorylation ; Pediatrics ; Reactive Oxygen Species ; Treatment Outcome</subject><ispartof>Journal of inherited metabolic disease, 2011-04, Vol.34 (2), p.293-307</ispartof><rights>SSIEM and Springer 2010</rights><rights>2011 SSIEM</rights><rights>SSIEM and Springer 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</citedby><cites>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10545-009-9005-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10545-009-9005-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,41488,42557,45574,45575,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koene, Saskia</creatorcontrib><creatorcontrib>Willems, Peter H. G. M.</creatorcontrib><creatorcontrib>Roestenberg, Peggy</creatorcontrib><creatorcontrib>Koopman, Werner J. H.</creatorcontrib><creatorcontrib>Smeitink, Jan A. M.</creatorcontrib><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><title>Journal of inherited metabolic disease</title><addtitle>J Inherit Metab Dis</addtitle><addtitle>J Inherit Metab Dis</addtitle><description>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Cell Nucleus - genetics</subject><subject>Disease Models, Animal</subject><subject>DNA - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Electron Transport Complex I - deficiency</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Medicine</subject><subject>Models, Biological</subject><subject>Oxidative Phosphorylation</subject><subject>Pediatrics</subject><subject>Reactive Oxygen Species</subject><subject>Treatment Outcome</subject><issn>0141-8955</issn><issn>1573-2665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkUtP3DAUhS0EKlPaH8AGRWxYuVw_bpwsEa9OxWPTrq2McwNBSTzYRMz8ezwKLRJSBSsv_J2je85hbF_ADwFgjqMA1MgBSl4CIF9tsZlAo7jMc9xmMxBa8KJE3GVfY3yABBaIX9iuBAGmBD1jl9d-jJT1vqYuZo0P2TC6jqqQnd2ccBpc-qizvn3y7t4PdWirLnO-X3a0yuZZTU3r2kStv7GdpuoifX9999ifi_Pfpz_51e3l_PTkijtdSMUVmnwhlMlR6JqQFg01qligVk4qoyonSmy0cTkIBKhTKifRGQeyrEvVOLXHjibfZfCPI8Un27fRUddVA6UkNoXSppCm-AQplZZCiUQeviMf_BiGFMMWmLx0Dhs7MUEu-BgDNXYZ2r4KayvAbtaw0xo2lWw3a9hV0hy8Go-Lnup_ir_1J8BMwHPb0fpjR_trfn2WulBJKSdlTKLhjsLbzf-_5wXb7KOL</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Koene, Saskia</creator><creator>Willems, Peter H. G. M.</creator><creator>Roestenberg, Peggy</creator><creator>Koopman, Werner J. H.</creator><creator>Smeitink, Jan A. M.</creator><general>Springer Netherlands</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope></search><sort><creationdate>201104</creationdate><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><author>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Cell Nucleus - genetics</topic><topic>Disease Models, Animal</topic><topic>DNA - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Electron Transport Complex I - deficiency</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Medicine</topic><topic>Models, Biological</topic><topic>Oxidative Phosphorylation</topic><topic>Pediatrics</topic><topic>Reactive Oxygen Species</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koene, Saskia</creatorcontrib><creatorcontrib>Willems, Peter H. G. M.</creatorcontrib><creatorcontrib>Roestenberg, Peggy</creatorcontrib><creatorcontrib>Koopman, Werner J. H.</creatorcontrib><creatorcontrib>Smeitink, Jan A. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of inherited metabolic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koene, Saskia</au><au>Willems, Peter H. G. M.</au><au>Roestenberg, Peggy</au><au>Koopman, Werner J. H.</au><au>Smeitink, Jan A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</atitle><jtitle>Journal of inherited metabolic disease</jtitle><stitle>J Inherit Metab Dis</stitle><addtitle>J Inherit Metab Dis</addtitle><date>2011-04</date><risdate>2011</risdate><volume>34</volume><issue>2</issue><spage>293</spage><epage>307</epage><pages>293-307</pages><issn>0141-8955</issn><eissn>1573-2665</eissn><abstract>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>20107904</pmid><doi>10.1007/s10545-009-9005-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8955 |
ispartof | Journal of inherited metabolic disease, 2011-04, Vol.34 (2), p.293-307 |
issn | 0141-8955 1573-2665 |
language | eng |
recordid | cdi_proquest_miscellaneous_904478278 |
source | MEDLINE; SpringerNature Journals; Access via Wiley Online Library |
subjects | Animals Biochemistry Cell Nucleus - genetics Disease Models, Animal DNA - genetics DNA, Mitochondrial - genetics Electron Transport Complex I - deficiency Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Human Genetics Humans Internal Medicine Medicine Medicine & Public Health Metabolic Diseases Mice Mice, Knockout Mitochondrial Diseases - genetics Mitochondrial Medicine Models, Biological Oxidative Phosphorylation Pediatrics Reactive Oxygen Species Treatment Outcome |
title | Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mouse%20models%20for%20nuclear%20DNA-encoded%20mitochondrial%20complex%20I%20deficiency&rft.jtitle=Journal%20of%20inherited%20metabolic%20disease&rft.au=Koene,%20Saskia&rft.date=2011-04&rft.volume=34&rft.issue=2&rft.spage=293&rft.epage=307&rft.pages=293-307&rft.issn=0141-8955&rft.eissn=1573-2665&rft_id=info:doi/10.1007/s10545-009-9005-x&rft_dat=%3Cproquest_cross%3E904478278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858274608&rft_id=info:pmid/20107904&rfr_iscdi=true |