Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency

Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inherited metabolic disease 2011-04, Vol.34 (2), p.293-307
Hauptverfasser: Koene, Saskia, Willems, Peter H. G. M., Roestenberg, Peggy, Koopman, Werner J. H., Smeitink, Jan A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 293
container_title Journal of inherited metabolic disease
container_volume 34
creator Koene, Saskia
Willems, Peter H. G. M.
Roestenberg, Peggy
Koopman, Werner J. H.
Smeitink, Jan A. M.
description Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.
doi_str_mv 10.1007/s10545-009-9005-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_904478278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>904478278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</originalsourceid><addsrcrecordid>eNqNkUtP3DAUhS0EKlPaH8AGRWxYuVw_bpwsEa9OxWPTrq2McwNBSTzYRMz8ezwKLRJSBSsv_J2je85hbF_ADwFgjqMA1MgBSl4CIF9tsZlAo7jMc9xmMxBa8KJE3GVfY3yABBaIX9iuBAGmBD1jl9d-jJT1vqYuZo0P2TC6jqqQnd2ccBpc-qizvn3y7t4PdWirLnO-X3a0yuZZTU3r2kStv7GdpuoifX9999ifi_Pfpz_51e3l_PTkijtdSMUVmnwhlMlR6JqQFg01qligVk4qoyonSmy0cTkIBKhTKifRGQeyrEvVOLXHjibfZfCPI8Un27fRUddVA6UkNoXSppCm-AQplZZCiUQeviMf_BiGFMMWmLx0Dhs7MUEu-BgDNXYZ2r4KayvAbtaw0xo2lWw3a9hV0hy8Go-Lnup_ir_1J8BMwHPb0fpjR_trfn2WulBJKSdlTKLhjsLbzf-_5wXb7KOL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858274608</pqid></control><display><type>article</type><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Access via Wiley Online Library</source><creator>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</creator><creatorcontrib>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</creatorcontrib><description>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</description><identifier>ISSN: 0141-8955</identifier><identifier>EISSN: 1573-2665</identifier><identifier>DOI: 10.1007/s10545-009-9005-x</identifier><identifier>PMID: 20107904</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Biochemistry ; Cell Nucleus - genetics ; Disease Models, Animal ; DNA - genetics ; DNA, Mitochondrial - genetics ; Electron Transport Complex I - deficiency ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Mice ; Mice, Knockout ; Mitochondrial Diseases - genetics ; Mitochondrial Medicine ; Models, Biological ; Oxidative Phosphorylation ; Pediatrics ; Reactive Oxygen Species ; Treatment Outcome</subject><ispartof>Journal of inherited metabolic disease, 2011-04, Vol.34 (2), p.293-307</ispartof><rights>SSIEM and Springer 2010</rights><rights>2011 SSIEM</rights><rights>SSIEM and Springer 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</citedby><cites>FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10545-009-9005-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10545-009-9005-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,41488,42557,45574,45575,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koene, Saskia</creatorcontrib><creatorcontrib>Willems, Peter H. G. M.</creatorcontrib><creatorcontrib>Roestenberg, Peggy</creatorcontrib><creatorcontrib>Koopman, Werner J. H.</creatorcontrib><creatorcontrib>Smeitink, Jan A. M.</creatorcontrib><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><title>Journal of inherited metabolic disease</title><addtitle>J Inherit Metab Dis</addtitle><addtitle>J Inherit Metab Dis</addtitle><description>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Cell Nucleus - genetics</subject><subject>Disease Models, Animal</subject><subject>DNA - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Electron Transport Complex I - deficiency</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Medicine</subject><subject>Models, Biological</subject><subject>Oxidative Phosphorylation</subject><subject>Pediatrics</subject><subject>Reactive Oxygen Species</subject><subject>Treatment Outcome</subject><issn>0141-8955</issn><issn>1573-2665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkUtP3DAUhS0EKlPaH8AGRWxYuVw_bpwsEa9OxWPTrq2McwNBSTzYRMz8ezwKLRJSBSsv_J2je85hbF_ADwFgjqMA1MgBSl4CIF9tsZlAo7jMc9xmMxBa8KJE3GVfY3yABBaIX9iuBAGmBD1jl9d-jJT1vqYuZo0P2TC6jqqQnd2ccBpc-qizvn3y7t4PdWirLnO-X3a0yuZZTU3r2kStv7GdpuoifX9999ifi_Pfpz_51e3l_PTkijtdSMUVmnwhlMlR6JqQFg01qligVk4qoyonSmy0cTkIBKhTKifRGQeyrEvVOLXHjibfZfCPI8Un27fRUddVA6UkNoXSppCm-AQplZZCiUQeviMf_BiGFMMWmLx0Dhs7MUEu-BgDNXYZ2r4KayvAbtaw0xo2lWw3a9hV0hy8Go-Lnup_ir_1J8BMwHPb0fpjR_trfn2WulBJKSdlTKLhjsLbzf-_5wXb7KOL</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Koene, Saskia</creator><creator>Willems, Peter H. G. M.</creator><creator>Roestenberg, Peggy</creator><creator>Koopman, Werner J. H.</creator><creator>Smeitink, Jan A. M.</creator><general>Springer Netherlands</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope></search><sort><creationdate>201104</creationdate><title>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</title><author>Koene, Saskia ; Willems, Peter H. G. M. ; Roestenberg, Peggy ; Koopman, Werner J. H. ; Smeitink, Jan A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4823-3576b1376514de5ebfef38b543c2373ac195f47c601500d900c25c7c029d93fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Cell Nucleus - genetics</topic><topic>Disease Models, Animal</topic><topic>DNA - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Electron Transport Complex I - deficiency</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Medicine</topic><topic>Models, Biological</topic><topic>Oxidative Phosphorylation</topic><topic>Pediatrics</topic><topic>Reactive Oxygen Species</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koene, Saskia</creatorcontrib><creatorcontrib>Willems, Peter H. G. M.</creatorcontrib><creatorcontrib>Roestenberg, Peggy</creatorcontrib><creatorcontrib>Koopman, Werner J. H.</creatorcontrib><creatorcontrib>Smeitink, Jan A. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Journal of inherited metabolic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koene, Saskia</au><au>Willems, Peter H. G. M.</au><au>Roestenberg, Peggy</au><au>Koopman, Werner J. H.</au><au>Smeitink, Jan A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency</atitle><jtitle>Journal of inherited metabolic disease</jtitle><stitle>J Inherit Metab Dis</stitle><addtitle>J Inherit Metab Dis</addtitle><date>2011-04</date><risdate>2011</risdate><volume>34</volume><issue>2</issue><spage>293</spage><epage>307</epage><pages>293-307</pages><issn>0141-8955</issn><eissn>1573-2665</eissn><abstract>Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>20107904</pmid><doi>10.1007/s10545-009-9005-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8955
ispartof Journal of inherited metabolic disease, 2011-04, Vol.34 (2), p.293-307
issn 0141-8955
1573-2665
language eng
recordid cdi_proquest_miscellaneous_904478278
source MEDLINE; SpringerNature Journals; Access via Wiley Online Library
subjects Animals
Biochemistry
Cell Nucleus - genetics
Disease Models, Animal
DNA - genetics
DNA, Mitochondrial - genetics
Electron Transport Complex I - deficiency
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Human Genetics
Humans
Internal Medicine
Medicine
Medicine & Public Health
Metabolic Diseases
Mice
Mice, Knockout
Mitochondrial Diseases - genetics
Mitochondrial Medicine
Models, Biological
Oxidative Phosphorylation
Pediatrics
Reactive Oxygen Species
Treatment Outcome
title Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mouse%20models%20for%20nuclear%20DNA-encoded%20mitochondrial%20complex%20I%20deficiency&rft.jtitle=Journal%20of%20inherited%20metabolic%20disease&rft.au=Koene,%20Saskia&rft.date=2011-04&rft.volume=34&rft.issue=2&rft.spage=293&rft.epage=307&rft.pages=293-307&rft.issn=0141-8955&rft.eissn=1573-2665&rft_id=info:doi/10.1007/s10545-009-9005-x&rft_dat=%3Cproquest_cross%3E904478278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858274608&rft_id=info:pmid/20107904&rfr_iscdi=true