Vasopressin Stimulates Na-dependent Phosphate Transport and Calcification in Rat Aortic Smooth Muscle Cells
We investigated the effect of arginine vasopressin (AVP) on inorganic phosphate (Pi) transport in A-10 rat aortic vascular smooth muscle cells (VSMCs). AVP time- and dose-dependently stimulated Na-dependent Pi transport in A-10 cells. This stimulatory effect of AVP on Pi transport was markedly suppr...
Gespeichert in:
Veröffentlicht in: | Endocrine Journal 2007, Vol.54(1), pp.103-112 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the effect of arginine vasopressin (AVP) on inorganic phosphate (Pi) transport in A-10 rat aortic vascular smooth muscle cells (VSMCs). AVP time- and dose-dependently stimulated Na-dependent Pi transport in A-10 cells. This stimulatory effect of AVP on Pi transport was markedly suppressed by V1 receptor antagonist. A protein kinase C (PKC) inhibitor calphostin C partially suppressed the stimulatory effect of AVP. The selective inhibitors of c-Jun-NH2-terminal mitogen-activated protein (MAP) kinase (Jun kinase) attenuated AVP-induced Pi transport, but Erk kinase or p38 MAP kinase inhibitors did not. Wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, suppressed AVP-induced Pi transport. Rapamycin, a selective inhibitor of S6 kinase, reduced this effect of AVP, while Akt kinase inhibitor did not. The combination of inhibitors for PKC, Jun kinase and PI 3-kinase completely suppressed the AVP-enhanced Pi transport. Furthermore, AVP rescued the VSMC from high phosphate-induced cell death and enhanced mineralization of these cells. In summary, these results suggest that AVP stimulates both Na-dependent Pi transport and mineralization in VSMCs. The mechanism is mediated by the activation of multiple signaling pathways including PKC, PI 3-kinase, S6 kinase and Jun kinase. |
---|---|
ISSN: | 0918-8959 1348-4540 |
DOI: | 10.1507/endocrj.K06-093 |