Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study

An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain 18F-FDG PET kinetic studies to generate parametric images. A 45 min dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear medicine 2001-10, Vol.15 (5), p.417-423
Hauptverfasser: Oda, K, Toyama, H, Uemura, K, Ikoma, Y, Kimura, Y, Senda, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 5
container_start_page 417
container_title Annals of nuclear medicine
container_volume 15
creator Oda, K
Toyama, H
Uemura, K
Ikoma, Y
Kimura, Y
Senda, M
description An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain 18F-FDG PET kinetic studies to generate parametric images. A 45 min dynamic scan was performed starting injection of FDG with a 2D PET scanner. The images were reconstructed with OS-EM (6 iterations, 16 subsets) and with filtered backprojection (FBP), and K1, k2 and k3 images were created by the Marquardt non-linear least squares method based on the 3-parameter kinetic model. Although the OS-EM activity images correlated fairly well with those obtained by FBP, the pixel correlations were poor for the k2 and k3 parametric images, but the plots were scattered along the line of identity and the mean values for K1, k2 and k3 obtained by OS-EM were almost equal to those by FBP. The kinetic fitting error for OS-EM was no smaller than that for FBP. The results suggest that OS-EM is not necessarily superior to FBP for creating parametric images.
doi_str_mv 10.1007/BF02988345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_904467164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939735281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-48790802efa7bfe884b70c4691f6a9396af753d0df62b0ec78afa59fa20cba0b3</originalsourceid><addsrcrecordid>eNqF0d9LHDEQB_BQKvU8fekfUEILFYTVye_ksR53VVAU1LfCks0mduV2cya7D_ffN-KBUGh9mnn4zMDMF6HPBE4JgDo7XwE1WjMuPqAZ0ZJXkjP2Ec3AEF4potU-Osj5CYBqoekntE-IEtpwOUO_FrHf2NTlOOAYcGlt78fUObw6v8V2aPHNXbW8xsm7OOQxTW7sCrXrx5i68XePu94--oxDTPh2eY_b7WD7Mp3Hqd0eor1g19kf7eocPayW94uL6urm5-Xix1XluNFjxbUyoIH6YFUTvNa8UeC4NCRIa5iRNijBWmiDpA14p7QNVphgKbjGQsPm6Ph17ybF58nnse677Px6bQcfp1wb4FwqUr4yR9__KxVljBGl3oWUEColMQV--ws-xSkN5dyaKq0oF5K-qK__VESAAC1IQSevyKWYc_Kh3qTy3rStCdQvSddvSRf8ZbdxanrfvtFdtOwP0KOguQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215050851</pqid></control><display><type>article</type><title>Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Oda, K ; Toyama, H ; Uemura, K ; Ikoma, Y ; Kimura, Y ; Senda, M</creator><creatorcontrib>Oda, K ; Toyama, H ; Uemura, K ; Ikoma, Y ; Kimura, Y ; Senda, M</creatorcontrib><description>An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain 18F-FDG PET kinetic studies to generate parametric images. A 45 min dynamic scan was performed starting injection of FDG with a 2D PET scanner. The images were reconstructed with OS-EM (6 iterations, 16 subsets) and with filtered backprojection (FBP), and K1, k2 and k3 images were created by the Marquardt non-linear least squares method based on the 3-parameter kinetic model. Although the OS-EM activity images correlated fairly well with those obtained by FBP, the pixel correlations were poor for the k2 and k3 parametric images, but the plots were scattered along the line of identity and the mean values for K1, k2 and k3 obtained by OS-EM were almost equal to those by FBP. The kinetic fitting error for OS-EM was no smaller than that for FBP. The results suggest that OS-EM is not necessarily superior to FBP for creating parametric images.</description><identifier>ISSN: 0914-7187</identifier><identifier>EISSN: 1864-6433</identifier><identifier>DOI: 10.1007/BF02988345</identifier><identifier>PMID: 11758946</identifier><language>eng</language><publisher>Japan: Springer Nature B.V</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Digital imaging ; Fluorodeoxyglucose F18 ; Humans ; Image Enhancement - methods ; Image processing ; Image reconstruction ; Kinetics ; Least squares method ; Phantoms, Imaging ; Positron emission ; Positron emission tomography ; Radiopharmaceuticals ; Studies ; Tomography, Emission-Computed - methods</subject><ispartof>Annals of nuclear medicine, 2001-10, Vol.15 (5), p.417-423</ispartof><rights>Springer 2001</rights><rights>Springer 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-48790802efa7bfe884b70c4691f6a9396af753d0df62b0ec78afa59fa20cba0b3</citedby><cites>FETCH-LOGICAL-c498t-48790802efa7bfe884b70c4691f6a9396af753d0df62b0ec78afa59fa20cba0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11758946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oda, K</creatorcontrib><creatorcontrib>Toyama, H</creatorcontrib><creatorcontrib>Uemura, K</creatorcontrib><creatorcontrib>Ikoma, Y</creatorcontrib><creatorcontrib>Kimura, Y</creatorcontrib><creatorcontrib>Senda, M</creatorcontrib><title>Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study</title><title>Annals of nuclear medicine</title><addtitle>Ann Nucl Med</addtitle><description>An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain 18F-FDG PET kinetic studies to generate parametric images. A 45 min dynamic scan was performed starting injection of FDG with a 2D PET scanner. The images were reconstructed with OS-EM (6 iterations, 16 subsets) and with filtered backprojection (FBP), and K1, k2 and k3 images were created by the Marquardt non-linear least squares method based on the 3-parameter kinetic model. Although the OS-EM activity images correlated fairly well with those obtained by FBP, the pixel correlations were poor for the k2 and k3 parametric images, but the plots were scattered along the line of identity and the mean values for K1, k2 and k3 obtained by OS-EM were almost equal to those by FBP. The kinetic fitting error for OS-EM was no smaller than that for FBP. The results suggest that OS-EM is not necessarily superior to FBP for creating parametric images.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Digital imaging</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Kinetics</subject><subject>Least squares method</subject><subject>Phantoms, Imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radiopharmaceuticals</subject><subject>Studies</subject><subject>Tomography, Emission-Computed - methods</subject><issn>0914-7187</issn><issn>1864-6433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0d9LHDEQB_BQKvU8fekfUEILFYTVye_ksR53VVAU1LfCks0mduV2cya7D_ffN-KBUGh9mnn4zMDMF6HPBE4JgDo7XwE1WjMuPqAZ0ZJXkjP2Ec3AEF4potU-Osj5CYBqoekntE-IEtpwOUO_FrHf2NTlOOAYcGlt78fUObw6v8V2aPHNXbW8xsm7OOQxTW7sCrXrx5i68XePu94--oxDTPh2eY_b7WD7Mp3Hqd0eor1g19kf7eocPayW94uL6urm5-Xix1XluNFjxbUyoIH6YFUTvNa8UeC4NCRIa5iRNijBWmiDpA14p7QNVphgKbjGQsPm6Ph17ybF58nnse677Px6bQcfp1wb4FwqUr4yR9__KxVljBGl3oWUEColMQV--ws-xSkN5dyaKq0oF5K-qK__VESAAC1IQSevyKWYc_Kh3qTy3rStCdQvSddvSRf8ZbdxanrfvtFdtOwP0KOguQ</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Oda, K</creator><creator>Toyama, H</creator><creator>Uemura, K</creator><creator>Ikoma, Y</creator><creator>Kimura, Y</creator><creator>Senda, M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20011001</creationdate><title>Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study</title><author>Oda, K ; Toyama, H ; Uemura, K ; Ikoma, Y ; Kimura, Y ; Senda, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-48790802efa7bfe884b70c4691f6a9396af753d0df62b0ec78afa59fa20cba0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Digital imaging</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Kinetics</topic><topic>Least squares method</topic><topic>Phantoms, Imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radiopharmaceuticals</topic><topic>Studies</topic><topic>Tomography, Emission-Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oda, K</creatorcontrib><creatorcontrib>Toyama, H</creatorcontrib><creatorcontrib>Uemura, K</creatorcontrib><creatorcontrib>Ikoma, Y</creatorcontrib><creatorcontrib>Kimura, Y</creatorcontrib><creatorcontrib>Senda, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of nuclear medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oda, K</au><au>Toyama, H</au><au>Uemura, K</au><au>Ikoma, Y</au><au>Kimura, Y</au><au>Senda, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study</atitle><jtitle>Annals of nuclear medicine</jtitle><addtitle>Ann Nucl Med</addtitle><date>2001-10-01</date><risdate>2001</risdate><volume>15</volume><issue>5</issue><spage>417</spage><epage>423</epage><pages>417-423</pages><issn>0914-7187</issn><eissn>1864-6433</eissn><abstract>An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain 18F-FDG PET kinetic studies to generate parametric images. A 45 min dynamic scan was performed starting injection of FDG with a 2D PET scanner. The images were reconstructed with OS-EM (6 iterations, 16 subsets) and with filtered backprojection (FBP), and K1, k2 and k3 images were created by the Marquardt non-linear least squares method based on the 3-parameter kinetic model. Although the OS-EM activity images correlated fairly well with those obtained by FBP, the pixel correlations were poor for the k2 and k3 parametric images, but the plots were scattered along the line of identity and the mean values for K1, k2 and k3 obtained by OS-EM were almost equal to those by FBP. The kinetic fitting error for OS-EM was no smaller than that for FBP. The results suggest that OS-EM is not necessarily superior to FBP for creating parametric images.</abstract><cop>Japan</cop><pub>Springer Nature B.V</pub><pmid>11758946</pmid><doi>10.1007/BF02988345</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0914-7187
ispartof Annals of nuclear medicine, 2001-10, Vol.15 (5), p.417-423
issn 0914-7187
1864-6433
language eng
recordid cdi_proquest_miscellaneous_904467164
source MEDLINE; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Algorithms
Brain - diagnostic imaging
Digital imaging
Fluorodeoxyglucose F18
Humans
Image Enhancement - methods
Image processing
Image reconstruction
Kinetics
Least squares method
Phantoms, Imaging
Positron emission
Positron emission tomography
Radiopharmaceuticals
Studies
Tomography, Emission-Computed - methods
title Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20parametric%20FBP%20and%20OS-EM%20reconstruction%20algorithm%20images%20for%20PET%20dynamic%20study&rft.jtitle=Annals%20of%20nuclear%20medicine&rft.au=Oda,%20K&rft.date=2001-10-01&rft.volume=15&rft.issue=5&rft.spage=417&rft.epage=423&rft.pages=417-423&rft.issn=0914-7187&rft.eissn=1864-6433&rft_id=info:doi/10.1007/BF02988345&rft_dat=%3Cproquest_cross%3E1939735281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215050851&rft_id=info:pmid/11758946&rfr_iscdi=true