Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign
Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because hete...
Gespeichert in:
Veröffentlicht in: | Political analysis 2011-01, Vol.19 (1), p.1-19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Political analysis |
container_volume | 19 |
creator | Imai, Kosuke Strauss, Aaron |
description | Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because heterogeneous treatment effects can provide additional substantive insights. This current state of affairs is also problematic from a policy makers' perspective since such studies do not identify subgroups for which treatments are effective. In this paper, we propose a formal two-step framework that first identifies heterogeneous treatment effects from a randomized experiment and then uses this information to derive an optimal policy about which treatment should be given to whom. Our proposed method avoids the risk of false discoveries that are likely in post hoc subgroup analysis routinely conducted in the discipline. We discuss our methodology in the context of get-out-the-vote randomized field experiments and show how the proposed two-step framework can be applied in real-world settings. |
doi_str_mv | 10.1093/pan/mpq035 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_904463786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mpq035</cupid><jstor_id>23011509</jstor_id><oup_id>10.1093/pan/mpq035</oup_id><sourcerecordid>23011509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e153fb835215aec7d2c00056295362e63ac947092978b43142e8cbd391311e493</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYeiYFt98b0QhFKQTpt_M5k8lmVthcJKqb4O2cydbZaZJE0yVP0cfmAzTFEQ0adcwo9z7rmnKN4SfEGwZJde2cvRP2JWHRSHhIu65LKRL_KMuSiJbMSr4ijGPcZECCkPix_rmMyoknEWuR7dQILgdmDBTRHdB1BpBJvQuu9Bp4j64EZ0p2znRvMdOrT-6iGYGYnn6MmkB3Tl_WD0IpgcSg-ANn62GNCnQVlr7G42mv-vIZWbKZV5Lr-4BGilRq_Mzr4uXvZqiPDm-T0uPn9Y369uytvN9cfV1W2pORepBFKxftuwipJKgRYd1RjjqqayYjWFmiktucCSStFsOSOcQqO3HZOEEQJcsuPibNH1wT1OEFM7mqhhyHvO-VuJOa-ZaOr_kk1Vc0yoxJl89we5d1OwOUbbcEG4pIJn6P0C6eBiDNC3Pl9RhW8twe1cZJuLbJciM3y6wG7y_-ZOFm4fkwu_SMowIRWe054_m6pxG0y3g9-r_UXuJ7krt6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847149274</pqid></control><display><type>article</type><title>Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign</title><source>Worldwide Political Science Abstracts</source><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Political Science Complete</source><creator>Imai, Kosuke ; Strauss, Aaron</creator><creatorcontrib>Imai, Kosuke ; Strauss, Aaron</creatorcontrib><description>Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because heterogeneous treatment effects can provide additional substantive insights. This current state of affairs is also problematic from a policy makers' perspective since such studies do not identify subgroups for which treatments are effective. In this paper, we propose a formal two-step framework that first identifies heterogeneous treatment effects from a randomized experiment and then uses this information to derive an optimal policy about which treatment should be given to whom. Our proposed method avoids the risk of false discoveries that are likely in post hoc subgroup analysis routinely conducted in the discipline. We discuss our methodology in the context of get-out-the-vote randomized field experiments and show how the proposed two-step framework can be applied in real-world settings.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mpq035</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Budget constraints ; Campaign strategies ; Estimates ; Estimation ; Experiments ; Field experiments ; Optimal strategies ; Planning ; Political analysis ; Political campaigns ; Political partisanship ; Political science ; Political Scientists ; Risk ; Voter registration ; Voter turnout ; Voting</subject><ispartof>Political analysis, 2011-01, Vol.19 (1), p.1-19</ispartof><rights>Copyright © The Author 2010. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2011 The Society for Political Methodology</rights><rights>The Author 2010. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>Copyright Oxford Publishing Limited(England) Winter 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e153fb835215aec7d2c00056295362e63ac947092978b43142e8cbd391311e493</citedby><cites>FETCH-LOGICAL-c447t-e153fb835215aec7d2c00056295362e63ac947092978b43142e8cbd391311e493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23011509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700012614/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Strauss, Aaron</creatorcontrib><title>Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because heterogeneous treatment effects can provide additional substantive insights. This current state of affairs is also problematic from a policy makers' perspective since such studies do not identify subgroups for which treatments are effective. In this paper, we propose a formal two-step framework that first identifies heterogeneous treatment effects from a randomized experiment and then uses this information to derive an optimal policy about which treatment should be given to whom. Our proposed method avoids the risk of false discoveries that are likely in post hoc subgroup analysis routinely conducted in the discipline. We discuss our methodology in the context of get-out-the-vote randomized field experiments and show how the proposed two-step framework can be applied in real-world settings.</description><subject>Budget constraints</subject><subject>Campaign strategies</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Experiments</subject><subject>Field experiments</subject><subject>Optimal strategies</subject><subject>Planning</subject><subject>Political analysis</subject><subject>Political campaigns</subject><subject>Political partisanship</subject><subject>Political science</subject><subject>Political Scientists</subject><subject>Risk</subject><subject>Voter registration</subject><subject>Voter turnout</subject><subject>Voting</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNqFkV9rFDEUxYeiYFt98b0QhFKQTpt_M5k8lmVthcJKqb4O2cydbZaZJE0yVP0cfmAzTFEQ0adcwo9z7rmnKN4SfEGwZJde2cvRP2JWHRSHhIu65LKRL_KMuSiJbMSr4ijGPcZECCkPix_rmMyoknEWuR7dQILgdmDBTRHdB1BpBJvQuu9Bp4j64EZ0p2znRvMdOrT-6iGYGYnn6MmkB3Tl_WD0IpgcSg-ANn62GNCnQVlr7G42mv-vIZWbKZV5Lr-4BGilRq_Mzr4uXvZqiPDm-T0uPn9Y369uytvN9cfV1W2pORepBFKxftuwipJKgRYd1RjjqqayYjWFmiktucCSStFsOSOcQqO3HZOEEQJcsuPibNH1wT1OEFM7mqhhyHvO-VuJOa-ZaOr_kk1Vc0yoxJl89we5d1OwOUbbcEG4pIJn6P0C6eBiDNC3Pl9RhW8twe1cZJuLbJciM3y6wG7y_-ZOFm4fkwu_SMowIRWe054_m6pxG0y3g9-r_UXuJ7krt6Y</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Imai, Kosuke</creator><creator>Strauss, Aaron</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20110101</creationdate><title>Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign</title><author>Imai, Kosuke ; Strauss, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e153fb835215aec7d2c00056295362e63ac947092978b43142e8cbd391311e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Budget constraints</topic><topic>Campaign strategies</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Experiments</topic><topic>Field experiments</topic><topic>Optimal strategies</topic><topic>Planning</topic><topic>Political analysis</topic><topic>Political campaigns</topic><topic>Political partisanship</topic><topic>Political science</topic><topic>Political Scientists</topic><topic>Risk</topic><topic>Voter registration</topic><topic>Voter turnout</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Strauss, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Kosuke</au><au>Strauss, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Although a growing number of political scientists are conducting randomized experiments, many of them only report the average treatment effects and do not systematically explore the variation in treatment effects across subpopulations. This is unfortunate from a scientific point of view because heterogeneous treatment effects can provide additional substantive insights. This current state of affairs is also problematic from a policy makers' perspective since such studies do not identify subgroups for which treatments are effective. In this paper, we propose a formal two-step framework that first identifies heterogeneous treatment effects from a randomized experiment and then uses this information to derive an optimal policy about which treatment should be given to whom. Our proposed method avoids the risk of false discoveries that are likely in post hoc subgroup analysis routinely conducted in the discipline. We discuss our methodology in the context of get-out-the-vote randomized field experiments and show how the proposed two-step framework can be applied in real-world settings.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mpq035</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2011-01, Vol.19 (1), p.1-19 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_miscellaneous_904463786 |
source | Worldwide Political Science Abstracts; Cambridge Journals; JSTOR Archive Collection A-Z Listing; Political Science Complete |
subjects | Budget constraints Campaign strategies Estimates Estimation Experiments Field experiments Optimal strategies Planning Political analysis Political campaigns Political partisanship Political science Political Scientists Risk Voter registration Voter turnout Voting |
title | Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Heterogeneous%20Treatment%20Effects%20from%20Randomized%20Experiments,%20with%20Application%20to%20the%20Optimal%20Planning%20of%20the%20Get-Out-the-Vote%20Campaign&rft.jtitle=Political%20analysis&rft.au=Imai,%20Kosuke&rft.date=2011-01-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mpq035&rft_dat=%3Cjstor_proqu%3E23011509%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847149274&rft_id=info:pmid/&rft_cupid=10_1093_pan_mpq035&rft_jstor_id=23011509&rft_oup_id=10.1093/pan/mpq035&rfr_iscdi=true |