Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak

An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2011-12, Vol.73 (12), p.3047-3070
Hauptverfasser: Hiebeler, David E., Michaud, Isaac J., Ackerman, Hamilton Hoxie, Reed Iosevich, Shannon, Robinson, Andre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3070
container_issue 12
container_start_page 3047
container_title Bulletin of mathematical biology
container_volume 73
creator Hiebeler, David E.
Michaud, Isaac J.
Ackerman, Hamilton Hoxie
Reed Iosevich, Shannon
Robinson, Andre
description An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.
doi_str_mv 10.1007/s11538-011-9660-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903660550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507158761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d9c78fa09d88fee84b42ef56f865954047ff8cd8ae959f77fdbbac1f7a75bb83</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYMo9rb6AXyRRR_qy2qSTTbJo1yuWqgUpD6HbDKpqXuz1_wp-O3NZauCUJ-GM_ObEyYHoRcEvyUYi3eZED7IHhPSq3HE_fgIbQintClMH6MNxor2kjJ8gk5zvsVtRw3qKTqhhDM2inGD4uc6l3ADEZIpYYndFzikxVW7imMvdya6rnyDbuc92JK7xXfbueYCCVz3Nd4Za0M0pYmL6MJdcNXMjYrd7hAc7IPtrmqZEpjvz9AT32bw_L6eoesPu-vtp_7y6uPF9v1lb5lgpXfKCukNVk5KDyDZxCh4Pno5csUZZsJ7aZ00oLjyQng3TcYSL4zg0ySHM3S-2rZbflTIRe9DtjDPJsJSs1Z4aP_FOW7km_-SRPCBiUFh2tBX_6C3S02xndH8qCSDomODXj8EUYEpU2IQpFFkpWxack7g9SGFvUk_NcH6GK1eo9UtWn2MVh-dX94712kP7s_G7ywbQFcgt1G8gfT36YddfwEWFa8j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902813926</pqid></control><display><type>article</type><title>Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hiebeler, David E. ; Michaud, Isaac J. ; Ackerman, Hamilton Hoxie ; Reed Iosevich, Shannon ; Robinson, Andre</creator><creatorcontrib>Hiebeler, David E. ; Michaud, Isaac J. ; Ackerman, Hamilton Hoxie ; Reed Iosevich, Shannon ; Robinson, Andre</creatorcontrib><description>An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-011-9660-6</identifier><identifier>PMID: 21544676</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Cell Biology ; Cluster Analysis ; Disease Outbreaks - prevention &amp; control ; Disease Outbreaks - statistics &amp; numerical data ; Epidemics ; Epidemics - prevention &amp; control ; Epidemics - statistics &amp; numerical data ; Epidemiology ; Humans ; Immunization ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Original Article ; Outbreaks ; Population structure ; Reproduction ; Spatial data ; Vaccination ; Vaccination - statistics &amp; numerical data</subject><ispartof>Bulletin of mathematical biology, 2011-12, Vol.73 (12), p.3047-3070</ispartof><rights>Society for Mathematical Biology 2011</rights><rights>Society for Mathematical Biology 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d9c78fa09d88fee84b42ef56f865954047ff8cd8ae959f77fdbbac1f7a75bb83</citedby><cites>FETCH-LOGICAL-c474t-d9c78fa09d88fee84b42ef56f865954047ff8cd8ae959f77fdbbac1f7a75bb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-011-9660-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-011-9660-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21544676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiebeler, David E.</creatorcontrib><creatorcontrib>Michaud, Isaac J.</creatorcontrib><creatorcontrib>Ackerman, Hamilton Hoxie</creatorcontrib><creatorcontrib>Reed Iosevich, Shannon</creatorcontrib><creatorcontrib>Robinson, Andre</creatorcontrib><title>Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.</description><subject>Cell Biology</subject><subject>Cluster Analysis</subject><subject>Disease Outbreaks - prevention &amp; control</subject><subject>Disease Outbreaks - statistics &amp; numerical data</subject><subject>Epidemics</subject><subject>Epidemics - prevention &amp; control</subject><subject>Epidemics - statistics &amp; numerical data</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Immunization</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Outbreaks</subject><subject>Population structure</subject><subject>Reproduction</subject><subject>Spatial data</subject><subject>Vaccination</subject><subject>Vaccination - statistics &amp; numerical data</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9rFTEQxYMo9rb6AXyRRR_qy2qSTTbJo1yuWqgUpD6HbDKpqXuz1_wp-O3NZauCUJ-GM_ObEyYHoRcEvyUYi3eZED7IHhPSq3HE_fgIbQintClMH6MNxor2kjJ8gk5zvsVtRw3qKTqhhDM2inGD4uc6l3ADEZIpYYndFzikxVW7imMvdya6rnyDbuc92JK7xXfbueYCCVz3Nd4Za0M0pYmL6MJdcNXMjYrd7hAc7IPtrmqZEpjvz9AT32bw_L6eoesPu-vtp_7y6uPF9v1lb5lgpXfKCukNVk5KDyDZxCh4Pno5csUZZsJ7aZ00oLjyQng3TcYSL4zg0ySHM3S-2rZbflTIRe9DtjDPJsJSs1Z4aP_FOW7km_-SRPCBiUFh2tBX_6C3S02xndH8qCSDomODXj8EUYEpU2IQpFFkpWxack7g9SGFvUk_NcH6GK1eo9UtWn2MVh-dX94712kP7s_G7ywbQFcgt1G8gfT36YddfwEWFa8j</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Hiebeler, David E.</creator><creator>Michaud, Isaac J.</creator><creator>Ackerman, Hamilton Hoxie</creator><creator>Reed Iosevich, Shannon</creator><creator>Robinson, Andre</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak</title><author>Hiebeler, David E. ; Michaud, Isaac J. ; Ackerman, Hamilton Hoxie ; Reed Iosevich, Shannon ; Robinson, Andre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d9c78fa09d88fee84b42ef56f865954047ff8cd8ae959f77fdbbac1f7a75bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cell Biology</topic><topic>Cluster Analysis</topic><topic>Disease Outbreaks - prevention &amp; control</topic><topic>Disease Outbreaks - statistics &amp; numerical data</topic><topic>Epidemics</topic><topic>Epidemics - prevention &amp; control</topic><topic>Epidemics - statistics &amp; numerical data</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Immunization</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Outbreaks</topic><topic>Population structure</topic><topic>Reproduction</topic><topic>Spatial data</topic><topic>Vaccination</topic><topic>Vaccination - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiebeler, David E.</creatorcontrib><creatorcontrib>Michaud, Isaac J.</creatorcontrib><creatorcontrib>Ackerman, Hamilton Hoxie</creatorcontrib><creatorcontrib>Reed Iosevich, Shannon</creatorcontrib><creatorcontrib>Robinson, Andre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiebeler, David E.</au><au>Michaud, Isaac J.</au><au>Ackerman, Hamilton Hoxie</au><au>Reed Iosevich, Shannon</au><au>Robinson, Andre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>73</volume><issue>12</issue><spage>3047</spage><epage>3070</epage><pages>3047-3070</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>21544676</pmid><doi>10.1007/s11538-011-9660-6</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2011-12, Vol.73 (12), p.3047-3070
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_903660550
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Cell Biology
Cluster Analysis
Disease Outbreaks - prevention & control
Disease Outbreaks - statistics & numerical data
Epidemics
Epidemics - prevention & control
Epidemics - statistics & numerical data
Epidemiology
Humans
Immunization
Life Sciences
Mathematical analysis
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Biological
Original Article
Outbreaks
Population structure
Reproduction
Spatial data
Vaccination
Vaccination - statistics & numerical data
title Multigeneration Reproduction Ratios and the Effects of Clustered Unvaccinated Individuals on Epidemic Outbreak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigeneration%20Reproduction%20Ratios%20and%20the%20Effects%20of%20Clustered%20Unvaccinated%20Individuals%20on%20Epidemic%20Outbreak&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Hiebeler,%20David%20E.&rft.date=2011-12-01&rft.volume=73&rft.issue=12&rft.spage=3047&rft.epage=3070&rft.pages=3047-3070&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-011-9660-6&rft_dat=%3Cproquest_cross%3E2507158761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902813926&rft_id=info:pmid/21544676&rfr_iscdi=true