Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems

Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2011-10, Vol.13 (10), p.2778-2793
Hauptverfasser: Weber, Carolyn F., Zak, Donald R., Hungate, Bruce A., Jackson, Robert B., Vilgalys, Rytas, Evans, R. David, Schadt, Christopher W., Megonigal, J. Patrick, Kuske, Cheryl R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2793
container_issue 10
container_start_page 2778
container_title Environmental microbiology
container_volume 13
creator Weber, Carolyn F.
Zak, Donald R.
Hungate, Bruce A.
Jackson, Robert B.
Vilgalys, Rytas
Evans, R. David
Schadt, Christopher W.
Megonigal, J. Patrick
Kuske, Cheryl R.
description Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; 
doi_str_mv 10.1111/j.1462-2920.2011.02548.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_903659996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1365043105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3488-7fae75e792cad9378c10c56cef7ab0fb176abef93ad3ef6c48a77e627617ee373</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF5BvcEnwR-KPAwdYlVJpaSXUqkfLScbgxYlDnGx3D_3vOGzZY_HFo5nnteR5sgwRXJB0PmwKUnKaU0VxQTEhBaZVKYvds-z0OHh-rAk9yV7FuMGYCCbwy-yEEimZUPw0e_gOcQh9hIiCRTE4jxrwfvbB7yfXIDv3P0zqha6beze5xE0BgYetmaBFZupCHH7CmNDVNUVmhIUdPOyQ6Vu0NaMztQdkmjHEiKzbAoImxH2coIuvsxfW-AhvHu-z7PbL-c3qa76-vrhcfVrnjpVS5sIaEBUIRRvTKiZkQ3BT8QasMDW2NRHc1GAVMy0Dy5tSGiGAU8GJAGCCnWXvDu8OY_g9Q5x05-LyT9NDmKNWmPFKKcUT-f5JkiQQl4zg6v8oprTiTEma0LeP6Fx30OphdJ0Z9_qfhwR8PAD3zsP-OCdYL771Ri8q9aJVL771X996p8-_XS5VyueHvEt73R3zZvyleXJe6burC00k_3xV8rW-YX8ANN2vDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022563982</pqid></control><display><type>article</type><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</creator><creatorcontrib>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</creatorcontrib><description>Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; &lt; 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2011.02548.x</identifier><identifier>PMID: 21883796</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>carbon dioxide ; Carbon Dioxide - analysis ; cellulose ; cellulose 1,4-beta-cellobiosidase ; creosote ; desert soils ; deserts ; DNA, Fungal - genetics ; dose response ; Ecosystem ; ecosystems ; fungal communities ; Fungi - classification ; Fungi - genetics ; Fungi - metabolism ; Gene Library ; genes ; Larrea - microbiology ; Molecular Sequence Data ; plantations ; Populus - microbiology ; protein subunits ; Sequence Analysis, DNA ; Soil - analysis ; soil crusts ; soil fungi ; Soil Microbiology</subject><ispartof>Environmental microbiology, 2011-10, Vol.13 (10), p.2778-2793</ispartof><rights>2011 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><rights>2011 Society for Applied Microbiology and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1462-2920.2011.02548.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1462-2920.2011.02548.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21883796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Carolyn F.</creatorcontrib><creatorcontrib>Zak, Donald R.</creatorcontrib><creatorcontrib>Hungate, Bruce A.</creatorcontrib><creatorcontrib>Jackson, Robert B.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Evans, R. David</creatorcontrib><creatorcontrib>Schadt, Christopher W.</creatorcontrib><creatorcontrib>Megonigal, J. Patrick</creatorcontrib><creatorcontrib>Kuske, Cheryl R.</creatorcontrib><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; &lt; 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</description><subject>carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>cellulose</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>creosote</subject><subject>desert soils</subject><subject>deserts</subject><subject>DNA, Fungal - genetics</subject><subject>dose response</subject><subject>Ecosystem</subject><subject>ecosystems</subject><subject>fungal communities</subject><subject>Fungi - classification</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Gene Library</subject><subject>genes</subject><subject>Larrea - microbiology</subject><subject>Molecular Sequence Data</subject><subject>plantations</subject><subject>Populus - microbiology</subject><subject>protein subunits</subject><subject>Sequence Analysis, DNA</subject><subject>Soil - analysis</subject><subject>soil crusts</subject><subject>soil fungi</subject><subject>Soil Microbiology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF5BvcEnwR-KPAwdYlVJpaSXUqkfLScbgxYlDnGx3D_3vOGzZY_HFo5nnteR5sgwRXJB0PmwKUnKaU0VxQTEhBaZVKYvds-z0OHh-rAk9yV7FuMGYCCbwy-yEEimZUPw0e_gOcQh9hIiCRTE4jxrwfvbB7yfXIDv3P0zqha6beze5xE0BgYetmaBFZupCHH7CmNDVNUVmhIUdPOyQ6Vu0NaMztQdkmjHEiKzbAoImxH2coIuvsxfW-AhvHu-z7PbL-c3qa76-vrhcfVrnjpVS5sIaEBUIRRvTKiZkQ3BT8QasMDW2NRHc1GAVMy0Dy5tSGiGAU8GJAGCCnWXvDu8OY_g9Q5x05-LyT9NDmKNWmPFKKcUT-f5JkiQQl4zg6v8oprTiTEma0LeP6Fx30OphdJ0Z9_qfhwR8PAD3zsP-OCdYL771Ri8q9aJVL771X996p8-_XS5VyueHvEt73R3zZvyleXJe6burC00k_3xV8rW-YX8ANN2vDg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Weber, Carolyn F.</creator><creator>Zak, Donald R.</creator><creator>Hungate, Bruce A.</creator><creator>Jackson, Robert B.</creator><creator>Vilgalys, Rytas</creator><creator>Evans, R. David</creator><creator>Schadt, Christopher W.</creator><creator>Megonigal, J. Patrick</creator><creator>Kuske, Cheryl R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><author>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3488-7fae75e792cad9378c10c56cef7ab0fb176abef93ad3ef6c48a77e627617ee373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>cellulose</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>creosote</topic><topic>desert soils</topic><topic>deserts</topic><topic>DNA, Fungal - genetics</topic><topic>dose response</topic><topic>Ecosystem</topic><topic>ecosystems</topic><topic>fungal communities</topic><topic>Fungi - classification</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Gene Library</topic><topic>genes</topic><topic>Larrea - microbiology</topic><topic>Molecular Sequence Data</topic><topic>plantations</topic><topic>Populus - microbiology</topic><topic>protein subunits</topic><topic>Sequence Analysis, DNA</topic><topic>Soil - analysis</topic><topic>soil crusts</topic><topic>soil fungi</topic><topic>Soil Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Carolyn F.</creatorcontrib><creatorcontrib>Zak, Donald R.</creatorcontrib><creatorcontrib>Hungate, Bruce A.</creatorcontrib><creatorcontrib>Jackson, Robert B.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Evans, R. David</creatorcontrib><creatorcontrib>Schadt, Christopher W.</creatorcontrib><creatorcontrib>Megonigal, J. Patrick</creatorcontrib><creatorcontrib>Kuske, Cheryl R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Carolyn F.</au><au>Zak, Donald R.</au><au>Hungate, Bruce A.</au><au>Jackson, Robert B.</au><au>Vilgalys, Rytas</au><au>Evans, R. David</au><au>Schadt, Christopher W.</au><au>Megonigal, J. Patrick</au><au>Kuske, Cheryl R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2011-10</date><risdate>2011</risdate><volume>13</volume><issue>10</issue><spage>2778</spage><epage>2793</epage><pages>2778-2793</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; &lt; 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21883796</pmid><doi>10.1111/j.1462-2920.2011.02548.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2011-10, Vol.13 (10), p.2778-2793
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_903659996
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects carbon dioxide
Carbon Dioxide - analysis
cellulose
cellulose 1,4-beta-cellobiosidase
creosote
desert soils
deserts
DNA, Fungal - genetics
dose response
Ecosystem
ecosystems
fungal communities
Fungi - classification
Fungi - genetics
Fungi - metabolism
Gene Library
genes
Larrea - microbiology
Molecular Sequence Data
plantations
Populus - microbiology
protein subunits
Sequence Analysis, DNA
Soil - analysis
soil crusts
soil fungi
Soil Microbiology
title Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20of%20soil%20cellulolytic%20fungal%20communities%20to%20elevated%20atmospheric%20CO2%20are%20complex%20and%20variable%20across%20five%20ecosystems&rft.jtitle=Environmental%20microbiology&rft.au=Weber,%20Carolyn%20F.&rft.date=2011-10&rft.volume=13&rft.issue=10&rft.spage=2778&rft.epage=2793&rft.pages=2778-2793&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2011.02548.x&rft_dat=%3Cproquest_pubme%3E1365043105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022563982&rft_id=info:pmid/21883796&rfr_iscdi=true