Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems
Summary Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2011-10, Vol.13 (10), p.2778-2793 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2793 |
---|---|
container_issue | 10 |
container_start_page | 2778 |
container_title | Environmental microbiology |
container_volume | 13 |
creator | Weber, Carolyn F. Zak, Donald R. Hungate, Bruce A. Jackson, Robert B. Vilgalys, Rytas Evans, R. David Schadt, Christopher W. Megonigal, J. Patrick Kuske, Cheryl R. |
description | Summary
Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; |
doi_str_mv | 10.1111/j.1462-2920.2011.02548.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_903659996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1365043105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3488-7fae75e792cad9378c10c56cef7ab0fb176abef93ad3ef6c48a77e627617ee373</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF5BvcEnwR-KPAwdYlVJpaSXUqkfLScbgxYlDnGx3D_3vOGzZY_HFo5nnteR5sgwRXJB0PmwKUnKaU0VxQTEhBaZVKYvds-z0OHh-rAk9yV7FuMGYCCbwy-yEEimZUPw0e_gOcQh9hIiCRTE4jxrwfvbB7yfXIDv3P0zqha6beze5xE0BgYetmaBFZupCHH7CmNDVNUVmhIUdPOyQ6Vu0NaMztQdkmjHEiKzbAoImxH2coIuvsxfW-AhvHu-z7PbL-c3qa76-vrhcfVrnjpVS5sIaEBUIRRvTKiZkQ3BT8QasMDW2NRHc1GAVMy0Dy5tSGiGAU8GJAGCCnWXvDu8OY_g9Q5x05-LyT9NDmKNWmPFKKcUT-f5JkiQQl4zg6v8oprTiTEma0LeP6Fx30OphdJ0Z9_qfhwR8PAD3zsP-OCdYL771Ri8q9aJVL771X996p8-_XS5VyueHvEt73R3zZvyleXJe6burC00k_3xV8rW-YX8ANN2vDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022563982</pqid></control><display><type>article</type><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</creator><creatorcontrib>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</creatorcontrib><description>Summary
Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2011.02548.x</identifier><identifier>PMID: 21883796</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>carbon dioxide ; Carbon Dioxide - analysis ; cellulose ; cellulose 1,4-beta-cellobiosidase ; creosote ; desert soils ; deserts ; DNA, Fungal - genetics ; dose response ; Ecosystem ; ecosystems ; fungal communities ; Fungi - classification ; Fungi - genetics ; Fungi - metabolism ; Gene Library ; genes ; Larrea - microbiology ; Molecular Sequence Data ; plantations ; Populus - microbiology ; protein subunits ; Sequence Analysis, DNA ; Soil - analysis ; soil crusts ; soil fungi ; Soil Microbiology</subject><ispartof>Environmental microbiology, 2011-10, Vol.13 (10), p.2778-2793</ispartof><rights>2011 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><rights>2011 Society for Applied Microbiology and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1462-2920.2011.02548.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1462-2920.2011.02548.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21883796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Carolyn F.</creatorcontrib><creatorcontrib>Zak, Donald R.</creatorcontrib><creatorcontrib>Hungate, Bruce A.</creatorcontrib><creatorcontrib>Jackson, Robert B.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Evans, R. David</creatorcontrib><creatorcontrib>Schadt, Christopher W.</creatorcontrib><creatorcontrib>Megonigal, J. Patrick</creatorcontrib><creatorcontrib>Kuske, Cheryl R.</creatorcontrib><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</description><subject>carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>cellulose</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>creosote</subject><subject>desert soils</subject><subject>deserts</subject><subject>DNA, Fungal - genetics</subject><subject>dose response</subject><subject>Ecosystem</subject><subject>ecosystems</subject><subject>fungal communities</subject><subject>Fungi - classification</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Gene Library</subject><subject>genes</subject><subject>Larrea - microbiology</subject><subject>Molecular Sequence Data</subject><subject>plantations</subject><subject>Populus - microbiology</subject><subject>protein subunits</subject><subject>Sequence Analysis, DNA</subject><subject>Soil - analysis</subject><subject>soil crusts</subject><subject>soil fungi</subject><subject>Soil Microbiology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF5BvcEnwR-KPAwdYlVJpaSXUqkfLScbgxYlDnGx3D_3vOGzZY_HFo5nnteR5sgwRXJB0PmwKUnKaU0VxQTEhBaZVKYvds-z0OHh-rAk9yV7FuMGYCCbwy-yEEimZUPw0e_gOcQh9hIiCRTE4jxrwfvbB7yfXIDv3P0zqha6beze5xE0BgYetmaBFZupCHH7CmNDVNUVmhIUdPOyQ6Vu0NaMztQdkmjHEiKzbAoImxH2coIuvsxfW-AhvHu-z7PbL-c3qa76-vrhcfVrnjpVS5sIaEBUIRRvTKiZkQ3BT8QasMDW2NRHc1GAVMy0Dy5tSGiGAU8GJAGCCnWXvDu8OY_g9Q5x05-LyT9NDmKNWmPFKKcUT-f5JkiQQl4zg6v8oprTiTEma0LeP6Fx30OphdJ0Z9_qfhwR8PAD3zsP-OCdYL771Ri8q9aJVL771X996p8-_XS5VyueHvEt73R3zZvyleXJe6burC00k_3xV8rW-YX8ANN2vDg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Weber, Carolyn F.</creator><creator>Zak, Donald R.</creator><creator>Hungate, Bruce A.</creator><creator>Jackson, Robert B.</creator><creator>Vilgalys, Rytas</creator><creator>Evans, R. David</creator><creator>Schadt, Christopher W.</creator><creator>Megonigal, J. Patrick</creator><creator>Kuske, Cheryl R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope></search><sort><creationdate>201110</creationdate><title>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</title><author>Weber, Carolyn F. ; Zak, Donald R. ; Hungate, Bruce A. ; Jackson, Robert B. ; Vilgalys, Rytas ; Evans, R. David ; Schadt, Christopher W. ; Megonigal, J. Patrick ; Kuske, Cheryl R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3488-7fae75e792cad9378c10c56cef7ab0fb176abef93ad3ef6c48a77e627617ee373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>cellulose</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>creosote</topic><topic>desert soils</topic><topic>deserts</topic><topic>DNA, Fungal - genetics</topic><topic>dose response</topic><topic>Ecosystem</topic><topic>ecosystems</topic><topic>fungal communities</topic><topic>Fungi - classification</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Gene Library</topic><topic>genes</topic><topic>Larrea - microbiology</topic><topic>Molecular Sequence Data</topic><topic>plantations</topic><topic>Populus - microbiology</topic><topic>protein subunits</topic><topic>Sequence Analysis, DNA</topic><topic>Soil - analysis</topic><topic>soil crusts</topic><topic>soil fungi</topic><topic>Soil Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Carolyn F.</creatorcontrib><creatorcontrib>Zak, Donald R.</creatorcontrib><creatorcontrib>Hungate, Bruce A.</creatorcontrib><creatorcontrib>Jackson, Robert B.</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Evans, R. David</creatorcontrib><creatorcontrib>Schadt, Christopher W.</creatorcontrib><creatorcontrib>Megonigal, J. Patrick</creatorcontrib><creatorcontrib>Kuske, Cheryl R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Carolyn F.</au><au>Zak, Donald R.</au><au>Hungate, Bruce A.</au><au>Jackson, Robert B.</au><au>Vilgalys, Rytas</au><au>Evans, R. David</au><au>Schadt, Christopher W.</au><au>Megonigal, J. Patrick</au><au>Kuske, Cheryl R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2011-10</date><risdate>2011</risdate><volume>13</volume><issue>10</issue><spage>2778</spage><epage>2793</epage><pages>2778-2793</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Elevated atmospheric CO2 generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO2. To investigate the impacts of ecosystem type and elevated atmospheric CO2 on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO2. The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P‐values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114‐member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO2 exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO2 (550 µmol mol−1) than under ambient CO2 (360 µmol mol−1 CO2). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU‐specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long‐term exposure to elevated atmospheric CO2.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21883796</pmid><doi>10.1111/j.1462-2920.2011.02548.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2011-10, Vol.13 (10), p.2778-2793 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_903659996 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | carbon dioxide Carbon Dioxide - analysis cellulose cellulose 1,4-beta-cellobiosidase creosote desert soils deserts DNA, Fungal - genetics dose response Ecosystem ecosystems fungal communities Fungi - classification Fungi - genetics Fungi - metabolism Gene Library genes Larrea - microbiology Molecular Sequence Data plantations Populus - microbiology protein subunits Sequence Analysis, DNA Soil - analysis soil crusts soil fungi Soil Microbiology |
title | Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20of%20soil%20cellulolytic%20fungal%20communities%20to%20elevated%20atmospheric%20CO2%20are%20complex%20and%20variable%20across%20five%20ecosystems&rft.jtitle=Environmental%20microbiology&rft.au=Weber,%20Carolyn%20F.&rft.date=2011-10&rft.volume=13&rft.issue=10&rft.spage=2778&rft.epage=2793&rft.pages=2778-2793&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2011.02548.x&rft_dat=%3Cproquest_pubme%3E1365043105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022563982&rft_id=info:pmid/21883796&rfr_iscdi=true |